• Title/Summary/Keyword: Ar-plasma treatment

Search Result 170, Processing Time 0.019 seconds

Improvement of Wettability and Removal of Skin Layer on Ar-Plasma-Treated Polypropylene Blend Surface (폴리프로필렌 복합소재의 아르곤 플라즈마 처리로 표면층 제거와 젖음성 향상)

  • Weon, Jong-Il;Lee, Sun-Yong
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.461-469
    • /
    • 2012
  • The surface modification and characterization of Ar-plasma treated polypropylene (PP) blend are investigated using x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and contact angle measurement. An increase in Ar-plasma treatment time leads to an increase in wettability, oxygen containing polar functional groups, the amount of talc, and surface roughness on the PP blend surface. A careful observation using SEM indicates that there exists a skin layer consisting of only PP component. The difference in viscosity between PP and rubber particles facilities the formation of skin layer. However, it is found that an increase in Ar-plasma treatment time helps to decrease the thickness of skin layer. Additional methodologies for the elimination of skin layer during injection molding are also discussed. The surface modification and morphological alteration induced by Ar-plasma treatment provides a hydrophilic state, followed by the improvement in wettability, on the PP blend surface.

Enhancement of seed germination and microbial disinfection on ginseng by cold plasma treatment

  • Lee, Younmi;Lee, Young Yoon;Kim, Young Soo;Balaraju, Kotnala;Mok, Young Sun;Yoo, Suk Jae;Jeon, Yongho
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.519-526
    • /
    • 2021
  • Background: This study aimed to investigate the effect of cold plasma treatment on the improvement of seed germination and surface sterilization of ginseng seeds. Methods: Dehisced ginseng (Panax ginseng) seeds were exposed to dielectric barrier discharge (DBD) plasma operated in argon (Ar) or an argon/oxygen mixture (Ar/O2), and the resulting germination and surface sterilization were compared with those of an untreated control group. Bacterial and fungal detection assays were performed for plasma-treated ginseng seeds after serial dilution of surface-washed suspensions. The microbial colonies (fungi and bacteria) were classified according to their phenotypical morphologies and identified by molecular analysis. Furthermore, the effect of cold plasma treatment on the in vitro antifungal activity and suppression of Cylindrocarpon destructans in 4-year-old ginseng root discs was investigated. Results: Seeds treated with plasma in Ar or Ar/O2 exhibited a higher germination rate (%) compared with the untreated controls. Furthermore, the plasma treatment exhibited bactericidal and fungicidal effects on the seed surface, and the latter effect was stronger than the former. In addition, plasma treatment exhibited in vitro antifungal activity against C. destructans and reduced the disease severity (%) of root rot in 4-year-old ginseng root discs. The results demonstrate the stimulatory effect of plasma treatment on seed germination, surface sterilization, and root rot disease suppression in ginseng. Conclusion: The results of this study indicate that the cold plasma treatment can suppress the microbial community on the seed surface root rot in ginseng.

The Evaluation of Surface and Adhesive Bonding Properties for Cold Rolled Steel Sheet for Automotive Treated by Ar/O2 Atmospheric Pressure Plasma (대기압 Ar/O2 플라즈마 표면처리된 자동차용 냉연강판의 표면특성 및 접착특성평가)

  • Lee, Chan-Joo;Lee, Sang-Kon;Park, Geun-Hwan;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.354-361
    • /
    • 2008
  • Cold rolled steel sheet for automotive was treated by Ar/$O_2$ atmospheric pressure plasma to improve the adhesive bonding strength. Through the contact angle test and calculation of surface free energy for cold rolled steel sheet, the changes of surface properties were investigated before and after plasma treatment. The contact angle was decreased and surface free energy was increased after plasma treatment. And the change of surface roughness and morphology were observed by AFM(Atomic Force Microscope). The surface roughness of steel sheet was slightly changed. Based on Taguchi method, single lap shear test was performed to investigate the effect of experimental parameter such as plasma power, treatment time and flow rate of $O_2$ gas. Results shows that the bonding strength of steel sheet treated in Ar/$O_2$ atmospheric pressure plasma was improved about 20% compared with untreated sheet.

Structural Characteristics of Ar-N2 Plasma Treatment on Cu Surface (Ar-N2 플라즈마가 Cu 표면에 미치는 구조적 특성 분석)

  • Park, Hae-Sung;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.75-81
    • /
    • 2018
  • The effect of $Ar-N_2$ plasma treatment on Cu surface as one of solutions to realize reliable Cu-Cu wafer bonding was investigated. Structural characteristic of $Ar-N_2$ plasma treated Cu surface were analyzed using X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscope. Ar gas was used for a plasma ignition and to activate Cu surface by ion bombardment, and $N_2$ gas was used to protect the Cu surface from contamination such as -O or -OH by forming a passivation layer. The Cu specimen under high Ar partial pressure plasma treatment showed more copper oxide due to the activation on Cu surface, while Cu surface after high $N_2$ gas partial pressure plasma treatment showed less copper oxide due to the formation of Cu-N or Cu-O-N passivation layer. It was confirmed that nitrogen plasma can prohibit Cu-O formation on Cu surface, but nitrogen partial pressure in the $Ar-N_2$ plasma should be optimized for the formation of nitrogen passivation layer on the entire surface of Cu wafer.

Measurement of Changes in Work Function on MgO Protective Layer after H2-plasma Treatment (수소 Plasma 처리 후의 MgO 보호막에 대한 일함수 변화 측정)

  • Jeong, Jae-Cheon;Rhee, Seuk-Joo;Cho, Jae-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.611-614
    • /
    • 2007
  • The changes in the work $function({\Phi}_w)$ in the MgO protective layers after $plasma(Ar,\;H_2)$ treatment have been studied using ${\Upsilon}-focused$ ion beam $({\Upsilon}-FIB)$ system. The ${\Phi}_w$ was determined as follows: Ar-plasma $treatment({\Phi}_w=4.52eV)$, $H_2-plasma$ $treatment({\Phi}_w=5.65eV)$, and non-plasma $treatment({\Phi}_w=4.64eV)$. The results indicated that the H-plasma could not make any effective physical etching due to the small masses of hydrogen atoms and molecules while the hydration of H-plasma could grow some contaminating materials on the surface of MgO.

Performance enhancement of Organic Thin Film Transistor by Ar Ion Beam treatment (Ar Ion Beam 처리를 통한 Organic Thin Film Transistor의 성능향상)

  • Jung, Suk-Mo;Park, Jae-Young;Yi, Moon-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.15-19
    • /
    • 2007
  • This paper reports the effects of Ar ion beam surface treatment on a $SiO_2$ dielectric layer in organic thin film transistors. We compared the electrical properties of pentacene-based OTFTs, treated by $O_2$ plasma or Ar ion beam treatments and characterized the states of the surface of the dielectric by using atomic force microscopy and X-ray photoelectron spectroscopy. For the sample which received $O_2$ plasma treatment, the mobility increased significantly but the on/off current ratio was found very low. The Ar ion beam-treated sample showed a very high on/off current ratio as well as a moderately improved mobility. XPS data taken from the dielectric surfaces after each of treatments exhibit that the ratio of between Si-O bonds and O-Si-O bonds was much higher in the $O_2$ plasma treated surface than in the Ar ion beam treated surface. We believe that our surface treatment using an inert gas, Ar, carried out an effective surface cleaning while keeping surface damage very low, and also the improved device performances was achieved as a consequence of improved surface condition.

High Performance InGaZnO Thin Film Transistor by Atmospheric Pressure Ar Plasma Treatment (대기압 아르곤 플라즈마 처리를 통한 IGZO TFT의 전기적 특성 향상 연구)

  • Jeong, Byung-Jun;Jeong, Jun-Kyo;Park, Jung-Hyun;Kim, Yu-Jung;Lee, Hi-Deok;Choi, Ho-Suk;Lee, Ga-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.59-62
    • /
    • 2017
  • In this paper, atmospheric pressure plasma treatment was proposed for high performance indium gallium zinc oxide thin film transistor (IGZO TFT). RF Ar plasma treatment is performed at room temperature under atmospheric pressure as a simple and cost effective channel surface treatment method. The experimental results show that field effect mobility can be enhanced by $2.51cm^2/V{\cdot}s$ from $1.69cm^2/V{\cdot}s$ to $4.20cm^2/V{\cdot}s$ compared with a conventional device without plasma treatment. From X-ray photoelectron spectroscopy (XPS) analysis, the increase of oxygen vacancies and decrease of metal-oxide bonding are observed, which suggests that the suggested atmospheric Ar plasma treatment is a cost-effective useful process method to control the IGZO TFT performance.

  • PDF

Effect of Ar- Plasma Treatment on Mechanical Properties of Acrylic Fiber (아크릴섬유의 기계적 물성에 대한 알곤플라즈마 처리의 영향)

  • Seo Eon Deock
    • Textile Coloration and Finishing
    • /
    • v.16 no.6
    • /
    • pp.30-34
    • /
    • 2004
  • Polyacrylontrile fiber was modified with argon low temperature plasma by RF glow discharge at 240 mTorr, 40 W to investigate the surface morphological changes and mechanical characteristics such as elongation, tenacity, and modulus. Analysis of the SEM images revealed that the plasma treatment resulted in significant ablation on the surfaces rendering a severe crack formation. The morphological changes were evident with short treatment time of argon plasma although longer treatment time damaged the surface more severely. The mechanical characteristics such as tenacity and elongation were deteriorated due to the plasma treatment. The tenacity of the fiber treated with argon-plasma for 5 min showed a decreased value up to 21.9 % when compared to the untreated fiber. While the corresponding initial modulus(0 - 1 %) increased markedly up to 44.3 %.

Electro-optical characteristics of MgO protective layer after RF plasma treatment using Ar, $O_2$ and $H_2$ gases

  • Son, Chang-Gil;Lee, H.J.;Jung, J.C.;Park, W.B.;Moon, M.W.;Oh, P.Y.;Jeong, J.M.;Ko, B.D.;Lee, J.H.;Lim, J.E.;Han, Y.G.;Lee, S.B.;Yoo, N.L.;Jeong, S.H.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1211-1214
    • /
    • 2005
  • One of the important problems in recent AC-PDP technology is high efficiency. In this research, we have been investigated electro-optical characteristics of MgO protective layer after radio frequency(RF) plasma treatment using Ar, $O_2$, and $H_2$ gases. The breakdown voltage order was $O_2$ > Ar > Nontreatment > $H_2$. Also, brightness order was $O_2$ > Ar > Non-treatment > $H_2$. In this experiment, the best result was obtained after $O_2-plasma$ treatment.

  • PDF

A Study on the Carbothermic Reduction of Nb-Oxide and the refining by Ar/Ar-$H_2$ plasma and Hydrogen solubility of Nb metal (Ar/Ar-$H_2$ 플라즈마에 의한 Nb금속제조와 Nb금속의 수소용해)

  • Jeong, Yong-Seok;Hong, Jin-Seok;Kim, Mun-Cheol;Baek, Hong-Gu
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.565-574
    • /
    • 1993
  • The Ar/Ar- $H_{2}$ plasma method Lvas applied to reduce and refine high purity Nb metal. Inaddition, the reaction between molten Nb metal and hydrogen were also analyzed in the Ar-(20%)$H_{2}$plasma. The metallic Nb of 99.5wt% was obtained at the ratio of $C/Nb_{2}O_{5}$=5.00 in the Ar plasma reductionand the $O_2$ loss from the thermal decomposition of niobium oxides did not take place. In the Ar-(20%)Hi plasma the metallic Nb of 99.8wt% was produced at the ratio of $C/Nb_{2}O_{5}$=4.80. It was observedthat a major reaction of the deoxidation was the reaction with H, Hi, and a deoxidation by the evaporationof $NbO_x$ did not occur but a mass loss of Nb did by a "splash" effect. The deoxidation reaction rateobeyed the 1st order reaction kinetics and the reaction rate constant(k') of deoxidation was $7.8 \times 10_{-7}$(m/sec).The solubility of hydrogen in Nb metal was 60ppm and it was larger than the solubility of molecularstate hydrogen by 40ppm in the Ar-(20%)$H_{2}$ plasma method. A saturation was within 60sec anda hydrogen content was reduced below lOppm by a Ar plasma re-treatment.by a Ar plasma re-treatment.

  • PDF