DOI QR코드

DOI QR Code

Enhancement of seed germination and microbial disinfection on ginseng by cold plasma treatment

  • Lee, Younmi (Department of Plant Medicals, Andong National University) ;
  • Lee, Young Yoon (Department of Plant Medicals, Andong National University) ;
  • Kim, Young Soo (Department of Plant Medicals, Andong National University) ;
  • Balaraju, Kotnala (Agricultural Science & Technology Research Institute, Andong National University) ;
  • Mok, Young Sun (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Yoo, Suk Jae (Plasma Technology Research Center, National Fusion Research Institute) ;
  • Jeon, Yongho (Department of Plant Medicals, Andong National University)
  • Received : 2020.08.03
  • Accepted : 2020.12.07
  • Published : 2021.07.01

Abstract

Background: This study aimed to investigate the effect of cold plasma treatment on the improvement of seed germination and surface sterilization of ginseng seeds. Methods: Dehisced ginseng (Panax ginseng) seeds were exposed to dielectric barrier discharge (DBD) plasma operated in argon (Ar) or an argon/oxygen mixture (Ar/O2), and the resulting germination and surface sterilization were compared with those of an untreated control group. Bacterial and fungal detection assays were performed for plasma-treated ginseng seeds after serial dilution of surface-washed suspensions. The microbial colonies (fungi and bacteria) were classified according to their phenotypical morphologies and identified by molecular analysis. Furthermore, the effect of cold plasma treatment on the in vitro antifungal activity and suppression of Cylindrocarpon destructans in 4-year-old ginseng root discs was investigated. Results: Seeds treated with plasma in Ar or Ar/O2 exhibited a higher germination rate (%) compared with the untreated controls. Furthermore, the plasma treatment exhibited bactericidal and fungicidal effects on the seed surface, and the latter effect was stronger than the former. In addition, plasma treatment exhibited in vitro antifungal activity against C. destructans and reduced the disease severity (%) of root rot in 4-year-old ginseng root discs. The results demonstrate the stimulatory effect of plasma treatment on seed germination, surface sterilization, and root rot disease suppression in ginseng. Conclusion: The results of this study indicate that the cold plasma treatment can suppress the microbial community on the seed surface root rot in ginseng.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation funded by the Ministry of Science, ICT and Future Planning, Korea (Grant No. 2016R1A2A2A05920703).

References

  1. Yun TK. Brief introduction of Panax ginseng C.A. Meyer. J Korean Med Sci 2019 2001;16. S3-S5. https://doi.org/10.3346/jkms.2001.16.S.S3
  2. Lee TK, Johnke RM, Allison RR, O'Brie KF, Dobbs LJ. Radioprotective potential of ginseng. Mutagenesis 2005;20:237-43. https://doi.org/10.1093/mutage/gei041
  3. Kim YH, Ahn IO, Khan AL, Kamran M, Waqas M, Lee JS, Kim DH, Jang SW, Lee IJ. Regulation of endogenous gibberellins and abscisic acid levels during different seed collection periods in Panax ginseng. Hortic Environ Biotechnol 2014;55: 166-74. https://doi.org/10.1007/s13580-014-0146-y
  4. Lee JW, Jo IH, Kim JU, Hong CE, Kim YC, Kim DH, Park YD. Improvement of seed dehiscence and germination in ginseng by stratification, gibberellin, and/or kinetin treatments. Hortic Environ Biotech 2018;59:293-301. https://doi.org/10.1007/s13580-018-0039-6
  5. Blaszczak W, Doblado R, Frias J, Vidal-Valverde C, Jadwiga Sadowska J, Fornal J. Microstructural and biochemical changes in raw and germinated cowpea seeds upon high-pressure treatment. Food Res Int 2007;40:415-23. https://doi.org/10.1016/j.foodres.2006.10.018
  6. Al-Bachir M. Effect of gamma irradiation on microbial load and sensory characteristics of aniseed (Pimpinella anisum). Bioresource Technol 2007;98: 1871-6. https://doi.org/10.1016/j.biortech.2005.05.025
  7. Kwon WS, Lee JH, Lee MG. Optimum chilling terms for germination of the dehisced ginseng (Panax ginseng C. A. Meyer) seed. J Ginseng Res 2001;25: 167-70.
  8. Li TSC, Bedford KE, Sholberg PL. Improved germination of American ginseng seeds under controlled environments. HortTechnol 2000;10:131-5. https://doi.org/10.21273/HORTTECH.10.1.131
  9. Randeniya LK, de Groot GJJB. Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: a review. Plasma Process Polymers 2015;12:608-23. https://doi.org/10.1002/ppap.201500042
  10. Moreau M, Orange N, Feuilloley MGJ. Non-thermal plasma technologies: new tools for bio-decontamination. Biotech Adv 2008;26:610-7. https://doi.org/10.1016/j.biotechadv.2008.08.001
  11. Ananth A, Gandhi MS, Mok YS. A dielectric barrier discharge (DBD) plasma reactor: an efficient tool to prepare novel RuO2 nanorods. J Phys D Appl Phys 2013;46:155202. https://doi.org/10.1088/0022-3727/46/15/155202
  12. Henselova M, Slovakova L, Martinka M, Zahoranova A. Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia 2012;67:490-7. https://doi.org/10.2478/s11756-012-0046-5
  13. Tong JY, He R, Zhang XL, Zhan RT, Chen WW, Yang SZ. Effects of atmospheric pressure air plasma pretreatment on the seed germination and early growth of Andrographis paniculata. Plasma Sci Technol 2014;16:260. https://doi.org/10.1088/1009-0630/16/3/16
  14. Zhou ZW, Huang YF, Yang SZ, Chen W. Introduction of a new atmospheric pressure plasma device and application on tomato seeds. Agri Sci 2011;2: 23-7. https://doi.org/10.4236/as.2011.21004
  15. Selcuk M, Oksuz L, Basaran P. Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresource Technol 2008;99:5104-9. https://doi.org/10.1016/j.biortech.2007.09.076
  16. Porto CL, Sergio L, Boari F, Logrieco AF, Cantore V. Cold plasma pretreatment improves the germination of wild asparagus (Asparagus acutifolius L.) seeds. Scientia Horti 2019;256:108554. https://doi.org/10.1016/j.scienta.2019.108554
  17. Billah M, Sajib SA, Roy NC, Rashid MM, Talukder MR. Effects of DBD air plasma treatment on the enhancement of black gram (Vigna mungo L.) seed germination and growth. Arch Biochem Biophy 2020;681:108253. https://doi.org/10.1016/j.abb.2020.108253
  18. Yodpitak S, Mahatheeranont S, Boonyawan D, Sookwong P, Roytrakul S, Norkaew O. Cold plasma treatment to improve germination and enhance the bioactive phytochemical content of germinated brown rice. Food Chem 2019;289:328-39. https://doi.org/10.1016/j.foodchem.2019.03.061
  19. Perez Piza MC, Prevosto L, Zilli C, Cejas E, Kelly H, Balestrasse K. Effects of nonethermal plasmas on seed-borne Diaporthe/Phomopsis complex and germination parameters of soybean seeds. Innov Food Sci Emerg Technol 2018;49:82-91. https://doi.org/10.1016/j.ifset.2018.07.009
  20. da Silva ARM, Farias ML, da Silva DLS, Vitoriano JO, de Sousa RC, Alves-Juni C. Using atmospheric plasma to increase wettability, imbibition and germination of physically dormant seeds of Mimosa Caesalpiniafolia. Colloids and Surfaces B: Biointerfaces 2017;157:280-5. https://doi.org/10.1016/j.colsurfb.2017.05.063
  21. Khamsen N, Onwimol D, Teerakawanich N, Dechanupaprittha S, Kanokbannakorn W, Hongesombut K, Srisonphan S. Rice (Oryza sativa L.) seed sterilization and germination enhancement via atmospheric hybrid nonthermal discharge plasma. ACS Appl Mater Interfaces 2016;8:19268-75. https://doi.org/10.1021/acsami.6b04555
  22. Dobrynin D, Fridman G, Mukhin YV, Wynosky-Dolfi MA, Rieger J, Rest RF, Gutsol AF, Fridman A. Cold plasma inactivation of Bacillus cereus and Bacillus anthracis (Anthrax) spores. IEEE T Plasma Sci 2010;38:1878-84. https://doi.org/10.1109/TPS.2010.2041938
  23. Tsedaley B. Review on Seed health tests and detection methods of seedborne diseases. J Biol Agri Healthcare 2015;5:176-84.
  24. Wang H, Zhou B, Feng H. Surface characteristics of fresh produce and their impact on attachment and removal of human pathogens. Produce contamination. In: Gomez-Lopez VM, editor. Decontamination of fresh and minimally processed produce. USA: Wiley-Blackwell Publishing; 2012. p. 43-55.
  25. Sharma KK, Singh US, Sharma P, Kumar A, Sharma L. Seed treatments for sustainable agriculture-A review. J Appl Nat Sci 2015 2015;7:521-39.
  26. Mosovska S, Medvecka V, Halaszova N, Durina P, Valik L, Mikulajova A, Zahoranova A. Cold atmospheric pressure ambient air plasma inhibition of pathogenic bacteria on the surface of black pepper. Food Res Int 2018;106: 862-9. https://doi.org/10.1016/j.foodres.2018.01.066
  27. Choi JH, Han I, Baik HK, Lee MH, Han DW, Park JC, Lee IS, Song KM, Lim YS. Analysis of sterilization effect by pulsed dielectric barrier discharge. J Electrostat 2006;64:17-22. https://doi.org/10.1016/j.elstat.2005.04.001
  28. Yin MQ, Huang MJ, Ma BZ, Ma TC. Stimulating effects of seed treatment by magnetized plasma on tomato growth and yield. Plasma Sci Technol 2005;7: 3143-7. https://doi.org/10.1088/1009-0630/7/6/017
  29. Jiang JF, Lu YF, Li JG, Li L, He X, Shao HL, Dong YH. Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (bacterial wilt). Plos One 2014a;9:1-6.
  30. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  31. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008;74:2461-70. https://doi.org/10.1128/AEM.02272-07
  32. Chi MH, Park SY, Lee YH. A quick and safe method for fungal DNA extraction. Plant Pathol J 2009;25:108-11. https://doi.org/10.5423/PPJ.2009.25.1.108
  33. White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols; a quide to methods and applications. San Diego: Academic Press; 1990. p. 315-22.
  34. Song M, Yun HY, Kim YH. Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum. J Ginseng Res 2014;38: 136-45. https://doi.org/10.1016/j.jgr.2013.11.016
  35. Dubinov AE, Lazarenko EM, Selemir VD. Effect of glow discharge air plasma on grain crops seed. IEEE Trans Plasma Sci 2000;28:180-3. https://doi.org/10.1109/27.842898
  36. Sera B, Gajdova I, Cernak M, Gavril B, Hnatiuc E, Kovacik D, Kriha V, Slama J, Sery M, Spatenka P. How various plasma sources may affect seed germination and growth. IEEE Plasma Science 2012;39:1365-9.
  37. Bormashenko E, Shapira Y, Grynyov R, Whyman G, Bormashenko Y, Drori E. Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). J Exp Bot 2015;66:4013-21. https://doi.org/10.1093/jxb/erv206
  38. Park Y, Oh KS, Oh J, Seok DC, Kim SB, Yoo SJ, Lee MJ. The biological effects of surface dielectric barrier discharge on seed germination and plant growth with barley. Plasma Process Polymers 2016;15:e1600056.
  39. Wang XQ, Zhou RW, Groot GD, Bazaka K, Murphy AB, Ostrikov K. Spectral characteristics of cotton seeds treated by a dielectric barrier discharge plasma. Sci Rep. 2017 2017;7:5601. https://doi.org/10.1038/s41598-017-04963-4
  40. Adhikari B, Adhikari M, Park GS. The effects of plasma on plant growth, development, and sustainability. Appl Sci 2020;10:6045. https://doi.org/10.3390/app10176045
  41. Jiang J, He X, Li L, Li J, Shao H, Xu Q, Ye R, Dong Y. Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Science Technol 2014b;16:54-8. https://doi.org/10.1088/1009-0630/16/1/12
  42. Schnabel U, Niquet R, Krohmann U, Winter J, Schluter O, Weltmann KD, Ehlbeck J. Decontamination of microbiologically contaminated specimen by direct and indirect plasma treatment. Plasma Process Polymers 2012;9: 569-75. https://doi.org/10.1002/ppap.201100088
  43. Dasan BG, Boyaci IH, Mutlu M. Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. Food Control 2016;70:1-8. https://doi.org/10.1016/j.foodcont.2016.05.015
  44. Butscher D, Loon HV, Waskow A, von Rohr PR, Schuppler M. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge. Int J Food Microbiol 2016;238:222-32. https://doi.org/10.1016/j.ijfoodmicro.2016.09.006
  45. Zhang X, Liu D, Zhou R, Song Y, Sun Y, Zhang Q, Niu J, Fan H, Yang SZ. Atmospheric cold plasma jet for plant disease treatment. Appl Phys Lett 2014;104:043702. https://doi.org/10.1063/1.4863204
  46. Salarieh S, Dorranian D. Sterilization of turmeric by atmospheric pressure dielectric barrier discharge plasma. Plasma Science Technol 2013;15. https:// doi.org/10.1088/1009-0630/15/11/09.
  47. Nimrichter L, Rodrigues ML, Rodrigues EG, Travassos LR. The multitude of targets for the immune system and drug therapy in the fungal cell wall. Microbes Infect 2005;7:789-98. https://doi.org/10.1016/j.micinf.2005.03.002
  48. Latge JP, Beauvais A. Functional duality of the cell wall. Curr Opin Microbiol 2014;20:111-7. https://doi.org/10.1016/j.mib.2014.05.009
  49. Moman RM, Najmaldeen H. The bactgericidal efficacy of cold atmospheric plasma technology on some bacterial strains. Egyp Acad J Biology Sci 2010;2: 43-7.
  50. Noori MSS, Saud HM. Potential plant growth-promoting activity of Pseudomonas sp isolated from paddy soil in Malaysia as biocontrol agent. J Plant Pathol Microbiol 2012;3:1-4.
  51. Lee K, Paek KH, Ju WT, Lee Y. Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. J Microbiol 2006;44:269-75.
  52. Panngom K, Lee SH, Park DH, Sim GB, Kim YH, Uhm HS, Park GS, Choi EH. Nonthermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host. Plos One 2014;9:e99300. https://doi.org/10.1371/journal.pone.0099300
  53. Park SU, Lim HS, Par KC, Par YH, Bae H. Fungal endophytes from three cultivars of panax ginseng Meyer cultivated in Korea. J Ginseng Res 2012;36: 107-13. https://doi.org/10.5142/jgr.2012.36.1.107
  54. Wu H, Yang HY, You XL, Li YH. Diversity of endophytic fungi from roots of Panax ginseng and their saponin yield capacities. SpringerPlus 2013;2:107. https://doi.org/10.1186/2193-1801-2-107
  55. Boudam MK, Moisan M, Saoudi B, Popovici C, Gherardi N, Massines F. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J Physi D Appl Phys 2006;39:3494-507. https://doi.org/10.1088/0022-3727/39/16/S07
  56. Hertwig C, Meneses N, Mathys A. Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: a review. Trends Food Sci Technol 2018;77:131-42. https://doi.org/10.1016/j.tifs.2018.05.011
  57. Kang YH, Lee SH, Lee JK. Development of a selective medium for the fungal pathogen Cylindrocarpon destructans using radicicol. Plant Pathol J 2014;30: 432-6. https://doi.org/10.5423/PPJ.NT.08.2014.0073
  58. Rahman M, Punja ZK. Factors influencing development of root rot on ginseng caused by Cylindrocarpon destructans. Phytopathol 2005;95:1381-90. https://doi.org/10.1094/PHYTO-95-1381
  59. Cabral A, Groenewald JZ, Rego C, Oliveira H, Crous PW. Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycol Prog 2012;11:655-88. https://doi.org/10.1007/s11557-011-0777-7
  60. Zahoranova A, Henselova M, Hudecova D, Kalinakova B, Kovacik D, Medvecka V, Cernak M. Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seed surface. Plasma Chem Plasma Process 2016;36:397-414. https://doi.org/10.1007/s11090-015-9684-z

Cited by

  1. Impact of Plasma-Activated Water (PAW) on Seed Germination of Soybean vol.2021, 2021, https://doi.org/10.1155/2021/7517052
  2. Cold Atmospheric Pressure Plasma Treatment of Maize Grains-Induction of Growth, Enzyme Activities and Heat Shock Proteins vol.22, pp.16, 2021, https://doi.org/10.3390/ijms22168509
  3. Development of Cold Plasma Technologies for Surface Decontamination of Seed Fungal Pathogens: Present Status and Perspectives vol.7, pp.8, 2021, https://doi.org/10.3390/jof7080650
  4. Influence of plasma-activated water (PAW) on the germination of radish, fenugreek, and pea seeds vol.11, pp.12, 2021, https://doi.org/10.1063/5.0070800