• Title/Summary/Keyword: Ar plasmas

Search Result 108, Processing Time 0.028 seconds

The Motion of Carbon Plume in Ar Plasmas (Ar 플라즈마 상태에서의 탄소 입자 운동 모델링)

  • So, Soon-Youl;Chung, Hae-Deok;Lee, Jin;Park, Gye-Choon;Kim, Chang-Sun;Moon, Chae-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.15-19
    • /
    • 2006
  • A pulsed laser ablation deposition (PLAD) technique is an excellent method for the fabrication of amorphous carbon (a-C) films, because it can generate highly energetic carbon clusters on a substrate. This paper was focused on the understanding and analysis of the motion of C particles in laser ablation assisted by Ar plasmas. The simulation has carried out under the pressure P=50 mTorr of Ar plasmas. Two-dimensional hybrid model consisting of fluid and Monte-Carlo models was developed and three kinds of the ablated particles which are carbon atom (C), ion ($C^+$) and electron were considered in the calculation of particle method. The motions of energetic $C^+$ and C deposited upon the substrate were investigated and compared. The interactions between the ablated particles and Ar gas plasmas were discussed.

  • PDF

The Simulation of Pulsed Laser Ablation - One-dimensional CCP Model - (레이저 어블레이션 시뮬레이션 - 1 차원 비대칭 용량결합형 모델 -)

  • So, Soon-Youl;Chung, Hae-Deok;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.22-26
    • /
    • 2008
  • In this paper, we developed a hybrid simulation model of carbon laser ablation under the Ar plasmas consisted of fluid and particle methods. Three kinds of carbon particles, which are carbon atom, ion and electron emitted by laser ablation, are considered in the computation. In the present simulation, we adopt capacitively coupled plasma with asymmetrical electrodes. As a result, in Ar plasmas, carbon ion motions were suppressed by a strong electric field and were captured in Ar plasmas. Therefore, a low number density of carbon ions were deposited upon substrate. In addition, the plume motions in Ar gas atmosphere was also discussed.

  • PDF

Modeling of the Laser Ablation under the RF Ar Plasmas (RF Ar 플라즈마에서의 레이저 어블레이션 모델링)

  • So, Soon-Youl;Lim, Jang-Seob;Lee, Jin;Jung, Hae-Deok;Park, Gye-Choon;Moon, Chae-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1408-1409
    • /
    • 2007
  • In this paper, we developed a hybrid simulation model of carbon laser ablation under the Ar plasmas consisted of fluid and particle methods. Three kinds of carbon particles, which are carbon atom, ion and electron emitted by laser ablation, are considered in the computation. In the present modeling, we adopt capacitively coupled plasma with ring electrode inserted in the space between the substrate and the target, graphite. This system may take an advantage of ${\mu}m$-sized droplets from the sheath electric field near the substrate. As a result, in Ar plasmas, carbon ion motions were suppressed by a strong electric field and were captured in Ar plasmas. Therefore, a low number density of carbon ions were deposited upon substrate. In addition, the plume motions in Ar gas atmosphere was also discussed.

  • PDF

DRY ETCHING CHARACTERISTICS OF INGAN USING INDUCTIVELY COUPLED $Cl_2/CHF_3,{\;}Cl_2/CH_4$ AND Cl_2/Ar PLASMAS.

  • Lee, D.H.;Kim, H.S.;G.Y. Yeom;Lee, J.W.;Kim, T.I.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.59-59
    • /
    • 1999
  • In this study, planer inductively coupled $Cl_2$ based plasmas were used to etch InGaN and the effects of plasma conditions on the InGaN etch properties have been characterized using quadrupole mass spectrometry(QMS) and optical emission spectroscopy(OES). As process conditions used to study the effects of plasma characteristics on the InGaN etch properties, $Cl_2$ was used as the main etch gas and $CHF_3,{\;}CH_4$, and Ar were used as additive gases. Operational pressure was varied from SmTorr to 3OmTorr, inductive power and bias voltage were varied from 400W to 800W and -50V to -250V, respectively while the substrate temperature was fixed at 50 centigrade. For the $Cl_2$ plasmas, selective etching of GaN to InGaN was obtained regardless of plasma conditions. The small addition of $CHF_3$ or Ar to $Cl_2$ and the decrease of pressure generally increased InGaN etch rates. The selective etching of InGaN to GaN could be obtained by the reduction of pressure to l5mTorr in $CI_2/IO%CHF_3{\;}or{\;}CI_2/IO%Ar$ plasma. The enhancement of InGaN etch rates was related to the ion bombardment for $CI_2/Ar$ plasmas and the formation of $CH_x$ radicals for $CI_2/CHF_3(CH_4)$ plasmas.

  • PDF

Spetroscopic Diagnostics of Reactive Plasma in a Facing Target Sputtering Unit (대향타겟트 스파터기에서 반응성 플라즈마의 스펙트로스코프 검진)

  • Na, Jong-Gab;Lee, Taek-Dong;Park, Soon-Ja
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.337-342
    • /
    • 1992
  • Spectroscopic diagnostics on reactive plasmas was carried out in a facing target sputtering unit with BaO +12Fe composite targets and 50% $O_2+$ Ar sputter gas. Spectra of rective plasmas were composed of peaks which were assigned to be Ba, B$a^+$, Fe, FeO, F$e^+$, Ar, $Ar^+$, O, $O^+$. As detecting positions in plasmas were far away from targets, the relative peak intensities of the ions and neutral species were decreased, but the relative intensities of the former decreased faster than those of the latter.

  • PDF

Modeling of Carbon Plume in PLAD Method Assisted by Ar Plasmas (Ar 플라즈마 상태에서 PLAD법에 의한 탄소 입자의 운동 모델링)

  • So, Soon-Youl;Lim, Jang-Seob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.24-31
    • /
    • 2005
  • A plused laser ablation deposition(PLAD) technique has been used for producing fine particle as well as thin film at relatively low substrate temperatures. However, in order to manufacture and evaluate such materials in detail, motions of plume particles generated by laser ablation have to be understood and interactions between the particles by ablation and gas plasma have to be clarified. Therefore this paper was focused on the understanding of plume motion in laser ablation assisted by hi plasmas at 100[mTorr]. One-dimensional hybrid model consisting of fluid and particle models was developed and three kinds of plume particles which are carbon atom(C), $ion(C^+)$ and electron were considered in the calculation of particle method. It was obtained that ablated $C^+$ was electrically captured in Ar plasmas by strong electric field(E). The difference between motions of the ablated electrons and $C^+$ made E strong and the collisional processes active. The energies of plume particles were investigated on a substrate surface. In addition the plume motion in Ar gas was also calculated and discussed.

Plasma Treatments to Forming Metal Contacts in Graphene FET

  • Choi, Min-Sup;Lee, Seung-Hwan;Lim, Yeong-Dae;Yoo, Won-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.121-121
    • /
    • 2011
  • Graphene formed by chemical vapor deposition was exposed to the various plasmas of Ar, O2, N2, and H2 to examine its effects on the bonding properties of graphene to metal. Upon the Ar plasma exposure of patterned graphene, the subsequently deposited metal electrodes remained intact, enabling successful fabrication of field effect transistor (FET) arrays. The effects of enhancing adhesion between graphene and metals were more evident from O2 plasmas than Ar, N2, and H2 plasmas, suggesting that chemical reaction of O radicals induces hydrophilic property of graphene more effectively than chemical reaction of H and N radicals and physical bombardment of Ar ions. From the electrical measurements (drain current vs. gate voltage) of field effect transistors before and after Ar plasma exposure, it was confirmed that the plasma treatment is very effective in controlling bonding properties of graphene to metals accurately without requiring buffer layers.

  • PDF

Dry Etching of GaAs and AlGaAs Semiconductor Materials in High Density BCl3and BCl3/Ar Inductively Coupled Plasmas (BCl3및 BCl3/Ar 고밀도 유도결합 플라즈마를 이용한 GaAs와 AlGaS 반도체 소자의 건식식각)

  • Lim, Wan-tae;Baek, In-kyoo;Lee, Je-won;Cho, Guan-Sik;Jeon, Min-hyun
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.635-639
    • /
    • 2003
  • We investigated dry etching of GaAs and AiGaAs in a high density planar inductively coupled plasma system with BCl$_3$and BCl$_3$/Ar gas chemistry. A detailed etch process study of GaAs and ALGaAs was peformed as functions of ICP source power, RIE chuck power and mixing ratio of $BCl_3$ and Ar. Chamber process pressure was fixed at 7.5 mTorr in this study. The ICP source power and RIE chuck power were varied from 0 to 500 W and from 0 to 150 W, respectively. GaAs etch rate increased with the increase of ICP source power and RIE chuck power. It was also found that etch rates of GaAs in $15BCi_3$/5Ar plasmas were relatively high with applied RIE chuck power compared to pure 20 sccm $BCl_3$plasmas. The result was the same as AlGaAs. We expect that high ion-assisted effect in $BCl_3$/Ar plasma increased etch rates of both materials. The GaAs and AlGaAs features etched at 20 sccm $BCl_3$and $15BCl_3$/5Ar with 300 W ICP source power, 100 W RIE chuck power and 7.5 mTorr showed very smooth surfaces(RMS roughness < 2 nm) and excellent sidewall. XPS study on the surfaces of processed GaAs also proved extremely clean surfaces of the materials after dry etching.

The Carbon Plume Simulation by Pulsed Laser Ablation Method - Interactions between Ar plasmas and Carbon Plume - (레이져 용삭법에 의한 탄소입자 운동모델 - 플라즈마와의 상관관계 -)

  • So, Soon-Youl;Chung, Hae-Deok;Lee, Jin;Park, Gye-Choon;Park, Gye-Chun;Kim, Chang-Sun;Moon, Chae-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.96-100
    • /
    • 2006
  • A pulsed laser ablation deposition (PLAD) technique is an excellent method for the fabrication of amorphous carbon (a-C) films. This paper was focused on the understanding and analysis of the motion of carbon atom (C) and carbon ion ($C^+$) particles in laser ablation assisted by Ar plasmas. The simulation has carried out under the pressure P=10~100 mTorr of Ar plasmas. Two-dimensional hybrid model consisting of fluid and Monte-Carlo models was developed and three kinds of the ablated particles which are C, $C^+$ and electron were considered in the calculation of particle method. The motions of energetic $C^+$ and C deposited upon the substrate were investigated and compared.

  • PDF

A study of the GaN etch properties using inductively coupled Cl$_2$-based plasmas (유도 결합형 Cl$_2$계 플라즈마를 이용한 GaN 식각 특성에 관한 연구)

  • 김현수;이재원;김태일;염근영
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.2
    • /
    • pp.83-92
    • /
    • 1999
  • GaN etching was performed using planar inductively coupled $Cl_2$-based plasmas and the effects of main process parameters on the characteristics of the plasmas and their relations to GaN etch rates were studied. Also, the GaN etch mechanism was investigated using a Langmuir probe and optical emission spectroscopy (OES) during the etching, and X-ray photoelectron spectroscopy (XPS) of the etched surfaces. The GaN etch rates increased with the increase of chlorine radical density and ion energy, and a vertical etch profile haying the etch rate close to 4000 $\AA$/min could be obtained. The addition of 10% Ar to $Cl_2$ gas increased the GaN etch rate and the addition of Ar (more than 20%) and HBr generally reduced the GaN etch rate. The GaN etch rate appeared to be more affected by the chemical reaction between Cl radicals and GaN compared to the physical sputtering itself under the sufficient ion bombardments to break GaN bonds.

  • PDF