• Title/Summary/Keyword: Approximation equation

Search Result 664, Processing Time 0.028 seconds

A DIRECT SOLVER FOR THE LEGENDRE TAU APPROXIMATION FOR THE TWO-DIMENSIONAL POISSON PROBLEM

  • Jun, Se-Ran;Kang, Sung-Kwon;Kwon, Yong-Hoon
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.25-42
    • /
    • 2007
  • A direct solver for the Legendre tau approximation for the two-dimensional Poisson problem is proposed. Using the factorization of symmetric eigenvalue problem, the algorithm overcomes the weak points of the Schur decomposition and the conventional diagonalization techniques for the Legendre tau approximation. The convergence of the method is proved and numerical results are presented.

Computational Solution of a H-J-B equation arising from Stochastic Optimal Control Problem

  • Park, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.440-444
    • /
    • 1998
  • In this paper, we consider numerical solution of a H-J-B (Hamilton-Jacobi-Bellman) equation of elliptic type arising from the stochastic control problem. For the numerical solution of the equation, we take an approach involving contraction mapping and finite difference approximation. We choose the It(equation omitted) type stochastic differential equation as the dynamic system concerned. The numerical method of solution is validated computationally by using the constructed test case. Map of optimal controls is obtained through the numerical solution process of the equation. We also show how the method applies by taking a simple example of nonlinear spacecraft control.

  • PDF

Performance degradation caused by coefficient approximation in Sliding-DFT based phasor measurement (순환 DFT 기반의 동기 위상 측정에 있어서 계수 근사에 따른 성능 열화 분석)

  • Kim, Chong-Yun;Chang, Tae-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.470-476
    • /
    • 2002
  • This paper presents an analysis of the performance degradation of coefficient approximation and frequency deviation in phase measurement algorithm based on Sliding-DFT. The analytic derivation is based on the statistics of the error dynamic equation that describes the error propagation of the recursion. The analysis result is intended to obtain a closed-form equation of error variance in terms of the number of bits used in coefficient approximation, the length of the DFT data block, and noise. It is verified with data obtained from the computer simulations.

Iterative Series Methods in 3-D EM Modeling (급수 전개법에 의한 3차원 전자탐사 모델링)

  • Cho In-Ky;Yong Hwan-Ho;Ahn Hee-Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.70-79
    • /
    • 2001
  • The integral equation method is a powerful tool for numerical electromagnetic modeling. But the difficulty of this technique is the size of the linear equations, which demands excessive memory and calculation time to invert. This limitation of the integral equation method becomes critical in inverse problem. The conventional Born approximation, where the electric field in the anomalous body is approximated by the background field, is very rapid and easy to compute. However, the technique is inaccurate when the conductivity contrast between the body and the background medium is large. Quasi-linear, quasi-analytical and extended Born approximations are novel approaches to 3-D EM modeling based on the linearization of the integral equations for scattered EM field. These approximation methods are much less time consuming than full integral equation method and more accurate than conventional Born approximation. They we, however, still approximate methods for 3-D EM modeling. Iterative series methods such as modified Born, quasi-linear and quasi-analytical can be used to increase the accuracy of various approximation methods. Comparisons of numerical performance against a full integral equation and various approximation codes show that the iterative series methods are very accurate and almost always converge. Furthermore, they are very fast and easy to implement on a computer. In this study, extended Born series method is developed and it shows more accurate result than that of other series methods. Therefore, Iterative series methods, including extended Born series, open principally new possibilities for fast and accurate 3-D EM modeling and inversion.

  • PDF

NUMERICAL SIMULATION OF THE RIESZ FRACTIONAL DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM

  • Zhang, H.;Liu, F.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.1-14
    • /
    • 2008
  • In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and $Gr\ddot{u}nwald$-Letnikov(G-L) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.

  • PDF

ON SOLVABILITY OF THE DISSIPATIVE KIRCHHOFF EQUATION WITH NONLINEAR BOUNDARY DAMPING

  • Zhang, Zai-Yun;Huang, Jian-Hua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.189-206
    • /
    • 2014
  • In this paper, we prove the global existence and uniqueness of the dissipative Kirchhoff equation $$u_{tt}-M({\parallel}{\nabla}u{\parallel}^2){\triangle}u+{\alpha}u_t+f(u)=0\;in\;{\Omega}{\times}[0,{\infty}),\\u(x,t)=0\;on\;{\Gamma}_1{\times}[0,{\infty}),\\{\frac{{\partial}u}{\partial{\nu}}}+g(u_t)=0\;on\;{\Gamma}_0{\times}[0,{\infty}),\\u(x,0)=u_0,u_t(x,0)=u_1\;in\;{\Omega}$$ with nonlinear boundary damping by Galerkin approximation benefited from the ideas of Zhang et al. [33]. Furthermore,we overcome some difficulties due to the presence of nonlinear terms $M({\parallel}{\nabla}u{\parallel}^2)$ and $g(u_t)$ by introducing a new variables and we can transform the boundary value problem into an equivalent one with zero initial data by argument of compacity and monotonicity.

AN ITERATIVE ALGORITHM FOR SOLVING THE LEAST-SQUARES PROBLEM OF MATRIX EQUATION AXB+CYD=E

  • Shen, Kai-Juan;You, Chuan-Hua;Du, Yu-Xia
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1233-1245
    • /
    • 2008
  • In this paper, an iterative method is proposed to solve the least-squares problem of matrix equation AXB+CYD=E over unknown matrix pair [X, Y]. By this iterative method, for any initial matrix pair [$X_1,\;Y_1$], a solution pair or the least-norm least-squares solution pair of which can be obtained within finite iterative steps in the absence of roundoff errors. In addition, we also consider the optimal approximation problem for the given matrix pair [$X_0,\;Y_0$] in Frobenius norm. Given numerical examples show that the algorithm is efficient.

  • PDF

A New Algorithm for the Integration of Thermal-Elasto-Plastic Constitutive Equation (열탄소성 구성방정식 적분을 위한 새로운 알고리즘)

  • 이동욱;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1455-1464
    • /
    • 1994
  • A new and efficient algorithm for the integration of the thermal-elasto-plastic constitutive equation is proposed. While it falls into the category of the return mapping method, the algorithm adopts the three point approximation of plastic corrector within one time increment step. The results of its application to a von Mises-type thermal-elasto-plastic model with combined hardening and temperature-dependent material properties show that the accurate iso-error maps are obtained for both angular and radial errors. The accuracy achieved is because the predicted stress increment in a single step calculation follows the exact value closely not only at the end of the step but also through the whole path. Also, the comparison of the computational time for the new and other algorithms shows that the new one is very efficient.

THE (R,S)-SYMMETRIC SOLUTIONS TO THE LEAST-SQUARES PROBLEM OF MATRIX EQUATION AXB = C

  • Liang, Mao-Lin;Dai, Li-Fang;Wang, San-Fu
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1061-1071
    • /
    • 2009
  • For real generalized reflexive matrices R, S, i.e., $R^T$ = R, $R^2$ = I, $S^T$ = S, $S^2$ = I, we say that real matrix X is (R,S)-symmetric, if RXS = X. In this paper, an iterative algorithm is proposed to solve the least-squares problem of matrix equation AXB = C with (R,S)-symmetric X. Furthermore, the optimal approximation solution to given matrix $X_0$ is also derived by this iterative algorithm. Finally, given numerical example and its convergent curve show that this method is feasible and efficient.

  • PDF

Optimal Solution of integral Coefficients in Distance Relaying Algorithm for T/L Protection considering Frequency Characteristics (주파수 특성을 고려한 송전선 보호용 적분근사거리계전 알고리즘의 최적 적분 계수 결정)

  • Cho, Kyung-Rae;Hong, Jun-Hee;Jung, Byung-Tae;Cho, Jung-Hyun;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.42-44
    • /
    • 1994
  • This paper presents the method of estimating integral coefficients of new distance relaying algorithm for transmission line protection. The proposed method is based on the differential equation calculates impedance value by approximation of integral term of integro-differential equation which relate voltage with current. As a result, we can determine the integral coefficients in least square error sense in frequency domain and we take into consideration the analog filter characteristics and frequency domain characteristics of the system to be protected. The simulation results showed that these coefficients can be successfully used to obtain impedance value in distance relay.

  • PDF