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ON SOLVABILITY OF THE DISSIPATIVE KIRCHHOFF

EQUATION WITH NONLINEAR BOUNDARY DAMPING

Zai-yun Zhang and Jian-hua Huang

Abstract. In this paper, we prove the global existence and uniqueness
of the dissipative Kirchhoff equation

utt −M(‖∇u‖2)△ u+ αut + f(u) = 0 inΩ× [0,∞),
u(x, t) = 0 onΓ1 × [0,∞),
∂u

∂ν
+ g(ut) = 0 on Γ0 × [0,∞),

u(x, 0) = u0, ut(x, 0) = u1 inΩ

with nonlinear boundary damping by Galerkin approximation benefited
from the ideas of Zhang et al. [33]. Furthermore,we overcome some dif-
ficulties due to the presence of nonlinear terms M(‖∇u‖2) and g(ut) by
introducing a new variables and we can transform the boundary value
problem into an equivalent one with zero initial data by argument of
compacity and monotonicity.

1. Introduction

Let Ω be a bounded domain of Rn and let Γ denote its C2 boundary. Assume
that Γ consists of two parts, Γ0 and Γ1, with positive measure and such that
Γ0 and Γ1 are closed and disjoint. Let ν = (ν1, ν2, . . . , νn) denote the unit
outward normal to Γ and let ∂

∂ν
denote the normal derivative.

This paper is concerned with the global existence and uniqueness of solu-
tions of the following dissipative Kirchhoff equation with nonlinear boundary
damping

(1.1)















utt −M(‖∇u‖2)△ u+ αut + f(u) = 0 in Ω× [0,∞),
u(x, t) = 0 on Γ1 × [0,∞),
∂u
∂ν

+ g(ut) = 0 on Γ0 × [0,∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

where ‖u‖2 =
∫

Ω |u|2dx, α > 0 and M(s), f(u), g(ut) are functions enjoying
some properties (see (A1)-(A3) below).
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For the case,M(s) = 1, we have the following wave equation with Dirichlet’s
boundary conditions

(1.2)







utt −△u+ αut + f(u) = 0 inΩ× [0,∞),
u(x, t) = 0 on ∂Ω× [0,∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω.

The problem (1.1) arises in many fields such as classical mechanics, fluid dy-
namics, quantum field theory (see [27, 33]). Later, lots of researchers ob-
tain global existence and uniqueness of solution of the equation (1.2) (see
[8, 9, 10, 15, 24, 25, 26, 28]). It is worth mentioning that Z. Y. Zhang et
al. [33] recently have investigated global existence and uniform decay for wave
equation with dissipative term and boundary damping as follows















utt −△u+ b(x)ut + f(u) = 0 in Ω× [0,∞),
u = 0 on Γ1 × [0,∞),
∂u
∂ν

+ g(ut) = 0 on Γ0 × [0,∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

under some assumptions on nonlinear feedback function g(ut). They have ob-
tain the results by means of Galerkin method and the multiplier technique.
More precisely, they introduced a new variables and transformed the bound-
ary value problem into an equivalent one with zero initial data by argument
of compacity and monotonicity. If M(s) = 1 and α = b(x), then the above
problem reduce to problem (1.2). More details are present in [33]. Later on,
Zhang et al. [32] studied the wellposedness and uniform stability of strong and
weak solutions of the nonlinear generalized dissipative Klein-Gordon equation
with nonlinear damped boundary conditions given by















utt −△u+ b(x)ut + f(u) + h(∇u) = 0 in Ω× (0,∞),
u = 0 on Γ0 × (0,∞),
∂u
∂ν

+ g(ut) = 0 on Γ1 × (0,∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω.

Also, the authors proved the wellposedness by means of nonlinear semigroup
method and obtain the uniform stabilization by using the perturbed energy
functional method.

Now, we pay attention to our problem. In [11], G. Kirchhoff firstly proposed
the so called Kirchhoff string model in the study nonlinear vibration of an
elastic string

(1.3) ρhutt + δut = p0 +
Eh

2L

(

∫ L

0

|ux|
2dx

)

uxx + f, 0 < x < L, t > 0,

where u = u(x, t) is the lateral displacement at the space coordinate x and
the time t, E is the Young modules, h is the cross-section area, ρ is the mass
density, L is the length, p0 is the initial axial tension, δ is the resistance modules
and f is the external force. More details are present in [30, 31, 34, 35].
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Lots of papers have devoted to the Kirchhoff equation with other boundary
conditions. For instance, we can see [18, 19, 21, 22, 23, 30, 31, 34, 35]. It is
interesting to observe that problems with condition M(s) = 1 and a feedback
occurs on the boundary were studied by many authors (see [3, 4, 5, 6, 7, 12,
13, 14, 20]). It is worth mentioning that M. Aassila [1] has employed Yosida
approximation to obtain the global existence for the Kirchhoff equation with
nonlinear damping as follows















utt −M(‖∇u‖2)△ u+ g(ut) = h(x, t) in Ω× [0,∞),
u(x, t) = 0 on Γ1 × [0,∞),
∂u
∂ν

= 0 on Γ0 × [0,∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω.

It is worth mentioning that Z. Y. Zhang [34] recently have considered the global
existence and asymptotic behavior of solutions to initial boundary problem







utt + γ△2u−M(‖∇u‖2)△u+ αut + f(u) = 0, (x, t) ∈ Ω× (0,∞)
u(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞)
u(x, 0) = u0(x), ut(x, 0) = u1(x),

by Banach contraction mapping principle and modified energy functional meth-
od.

However, according to our best knowledge, in the present paper, we have
to treat Eq.(1.1) with a nonlinear boundary damping condition g(ut) and non-
linear term M(‖∇u‖2) and it is not considered in the literature. The proof of
the existence is based on the Galerkin approximation. For strong solutions to
(1.1), this approximation requires a change of variables to transform (1.1) into
an equivalent problem with initial value equals zero. Especially, we overcome
some difficulties, that is, the presence of nonlinear terms M(‖∇u‖2) and non-
linear boundary damping g(ut) bring up serious difficulties when passing to the
limit, which overcome combining arguments of compacity and monotonicity.

We organize the paper as follows. In Section 2, we give the notations and
state our main results. In Section 3, we prove the existence and uniqueness of
strong and weak solutions to the problem (1.1) by Galerkin method.

2. Notations and main results

In this section, we give some notations which will be used throughout this
paper and will state our main results.

Let

V = {v ∈ H1(Ω); v = 0 on Γ1}

and we define

(u, v) =

∫

Ω

u(x)v(x)dx, (u, v)Γ0
=

∫

Γ0

u(x)v(x)dx,

‖u‖2 =

∫

Ω

u2dx, |u|2Γ0
=

∫

Γ0

u2dx.
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Now, we state the general assumptions:

(A1) Assumptions on f :

Let f : R → R be a W 1,∞
loc (R), piecewise C1(R) function,

(2.1) f(s)s ≥ 0 for s ∈ R.

Assume that there exists C1 > 0 such that

(2.2) |f ′(s)| ≤ C1(1 + |s|p−1), 1 < p ≤ n
n−2 for s ∈ R.

Setting F (s) =
∫ s

0 f(λ)dλ, there exist C2, C3 > 0 satisfying

(2.3) C2|s|
p+1 ≤ F (s) ≤ C3sf(s) for s ∈ R.

We notice that from (2.2), we derive that there exists C4 > 0 such that

(2.4) |f(s)| ≤ C4(1 + |s|p) for s ∈ R.

Also, we assume that there exists C4 > 0 such that

(2.5) |f(x) − f(y)| ≤ C5(|x|
p−1 + |y|p−1)|x− y| for x, y ∈ R.

(A2) Assumptions on g:
Let g : R → R be non-decrease C1(R) function,

g(s)s ≥ 0 for s 6= 0.

There exist Ci(i = 6, 7, 8, 9), such that

(2.6) C6|s| ≤ |g(s)| ≤ C7|s| if |s| ≤ 1,

(2.7) C8|s|
q ≤ |g(s)| ≤ C9|s|

q, 1 < q ≤ n−1
n−2 if |s| > 1.

(A3) Assumptions on M(s):
Let M : R → R be a C1(R) function. Assume that there exist C10, C11 > 0
such that

(2.8) 0 < C10 ≤M(s) ≤ C11 for s > 0.

Also, we define

M(s) =

∫ s

0

M(s)ds.

Furthermore, M(s) satisfies the following condition

|M(s)| ≤ sM(s).

(A4) Assume that

(2.9) {u0, u1} ∈ D(A)×D(A),

satisfying the compatibility condition

(2.10)
∂u

∂ν
+ g(ut) = 0 on Γ0,

where D(A) = {u ∈ V, △u ∈ H}.
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Notations. In this paper C, and Ci will denote various positive constants
which may be different from line to line and we denote L2(Ω) = H.

Now, we are position to state our main results.

Theorem 2.1. Under assumption (A1)-(A4), the problem (1.1) admits a unique

strong solution, that is, a function u(x, t) : [0,∞)× Ω → R, such that

u ∈ L∞[0,∞;V ), ut ∈ L∞[0,∞;V ), utt ∈ L∞[0,∞;L2(Ω)).

Theorem 2.2. Assume that {u0, u1} ∈ V ×L2(Ω) and assumptions (A1)-(A3)
hold. Then the problem (1.1) has a unique weak solutions, u(x, t) : [0,∞)×Ω →
R, in the class

u ∈ C[0,∞;V ) ∩ C1[0,∞;L2(Ω)).

3. Existence and uniqueness of strong and weak solutions

In this section, we prove the existence and uniqueness of strong solutions
of the problem (1.1), when u0, u1 are smooth. Firstly, we consider strong
solutions by Galerkin approximation and we extend the same result to weak
solutions using a density argument.

Now, we consider the variational function of (1.1) as follows
(3.1)
(utt, w)+M(‖∇u‖2)(∇u,∇w)+α(ut, w)+(g(ut), w)Γ0

+(f(u), w) = 0, ∀w ∈ V.

Strong solutions to (1.1) with boundary condition (g(ut), w)Γ0
can not be

obtained by the method of “special basis”, hence, basis formed by eigenfunc-
tions of the operator −△ can not be used for it. This leads us to differentiate
the variational formulation related with (1.1) with respect to time t. But, this
brings up serious difficulties when we shall estimate utt(0).

In order to overcome this difficulties, we can transform the boundary value
problem (1.1) into an equivalent one with zero initial data. In fact, we introduce
the new variables

(3.2) v(x, t) = u(x, t)− φ(x, t),

where

(3.3) φ(x, t) = u0(x) + tu1(x), t ∈ [0, T ].

Due to (2.11), (2.12), (3.1)-(3.3), we get the equivalent problem for variables
v :

(3.4)















vtt −M(‖∇v +∇φ‖2)△v + αvt + f(v + φ) = F in Ω× [0,∞),
v = 0 on Γ1 × [0,∞),
∂v
∂ν

+ g(vt + φt) = G on Γ0 × [0,∞),
v(0) = vt(0) = 0 in Ω,

where

(3.5) F = △φ+ αφt, G = −
∂φ

∂ν
.
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We note that if v is a solution of (3.4) in [0, T ], then u = v + φ is a solution of
(1.1) in the same interval.

Hence, using standard methods, we can extend the solution u to the interval
[0,∞). It is sufficient to prove that (3.4) has a local solution by using Galerkin
method.

Let (ωj)j∈N be basis in D(A) = V ∩H2(Ω) which is orthonormal in H and
setting Vm = span{ω1, ω2, . . . , ωm}.

Now, we define vm(t) =
∑n

j=1 gjm(t)ωj , where vm(t) is the solution the
Cauchy problem as follows:

(3.6)

(v′′m, w) +M(‖∇v +∇φ‖2)(∇vm,∇w) + (αv′m, w) + (g(v′m + φ′), w)Γ0

+ (f(vm + φ), w) = (F , w) + (G, w)Γ0
, ∀w ∈ Vm,

vm(0) = v′m(0) = 0.

By standard methods of differential equations, we prove the existence of a
solution (3.6) on some interval [0, tm], then, this solution can be extended to
the whole interval [0, T ] by use the first estimate as follows.

First Estimate Taking w = v′m in (3.6), we obtain

1

2

d

dt

{

‖v′m‖2 +M(‖∇v +∇φ‖2) + 2

∫

Ω

F (vm + φ)dx

}

+
1

2
α‖v′m‖2

+ (g(v′m + φ′), v′m + φ′)Γ0
= (F , v′m) +

d

dt
(G, vm)Γ0

− (G′, vm)Γ0

+ (f(vm + φ), v′m) + (g(v′m + φ′), φ′)Γ0
−M(‖∇v +∇φ‖2)(∇vm,∇u

1)

−M(‖∇v +∇φ‖2)(∇v′m,∇φ)−M(‖∇v +∇φ‖2)(∇φ,∇φ′),

i.e.,

(3.7)

1

2

d

dt

{

‖v′m‖2 +M(‖∇v +∇φ‖2) + 2

∫

Ω

F (vm + φ)dx

}

+ (g(v′m + φ′), v′m + φ′)Γ0

≤ (F , v′m) +
d

dt
I1(t) + I2(t) + I3(t) + I4(t) + I5(t) + I6(t) + I7(t).

Next, we shall estimate for Ii(t)(i = 1, 2, . . . , 7) in (3.7), respectively.
Due to (2.4) and applying Young’s inequality, we get

(3.8)

|I3| = |(f(vm + φ), v′m)|

≤ C

∫

Ω

(1 + |vm + φ|p)|φ′|dx

≤ C

{
∫

Ω

|φ′|dx+

∫

Ω

|vm + φ|p+1dx+

∫

Ω

|φ′|p+1dx

}

≤ C + C

∫

Ω

|vm + φ|p+1dx.
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At the same time, due to q
q+1 + 1

q+1 = 1, we obtain

(3.9)

|I4| = |(g(v′m + φ′), φ′)|

≤ ε

∫

Γ0

g(v′m + φ′)
q+1

q dΓ + C(ε)

∫

Γ0

|φ′|q+1dΓ,

where ε is an arbitrary positive constant.
Also, from (2.7), we deduce

(3.10) |g(s)|
q+1

q = |g(s)||g(s)|
1
q ≤ C11|g(s)||s|, |s| > 1.

Owing to Poincaré inequality, we conclude

(3.11) ‖v‖Γ0
≤ C‖∇v‖, ∀v ∈ V.

From Cauchy-Schwarz’s inequality, we have

(3.12) |I2| = |(G′, vm)Γ0
| ≤ C{‖G′‖2Γ0

+ ‖∇vm‖2}.

Combining (3.7)-(3.12), it follows that
(3.13)

1

2

d

dt

{

‖v′m‖2 +M(‖∇v +∇φ‖2) + 2

∫

Ω

F (vm + φ)dx

}

+ (1− ε)

∫

|v′

m
+φ′|>1

|g(v′m + φ′)|
q+1

q dΓ

≤ C(ε) + ‖F‖2 + ‖G′‖2Γ0
+
d

dt
I1(t)

+ C

{
∫

Ω

|vm + φ|p+1dx+ ‖v′m‖2 + ‖∇vm‖2
}

+ I5(t) + I6(t) + I7(t).

Now we pay attention to estimating the terms I1(t), I5(t), I6(t), I7(t) in
(3.13) as follows.

Due to (3.11), we have

(3.14) |I1| = |(G, vm)Γ0
| ≤

C2

4ε
‖G‖2Γ0

+ ε‖∇vm‖2.

From (A3) and Young’s inequality,we get

(3.15) |I5| ≤ C‖∇vm‖2 + C,

(3.16) |I6| ≤ C‖∇v′m‖2 + C,

(3.17) |I7| ≤ C.

From (3.13)-(3.17), choosing ε > 0 small enough and using Gronwall’s inequal-
ity and integrating (3.13) over (0, t), observing that vm(0) = v′m(0) = 0, and
taking (2.3) into account, it follows that
(3.18)

‖v′m‖2+M(‖∇v +∇φ‖2)+

∫

Ω

F (vm+φ)dx+

∫ t

0

∫

Γ0

|g(v′m+φ′)|
q+1

q dΓds ≤ C.
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Second Estimate Taking w = v′′m(0) in (3.6) and noticing that vm(0) =
v′m(0) = 0, we obtain

(3.19)

‖v′′m(0)‖2 + (g(u1), v′′m(0))Γ0
+ (f(u0), v′′m(0))

= (M(‖u0‖2)△u0 − αφt, v
′′
m(0)) + (−

∂u1

∂ν
, v′′m(0))Γ0

.

From (A3), (2.12) and (3.19), we obtain

‖v′′m(0)‖2 ≤ (‖f(u0)‖ + ‖△u0(0)‖)‖v′′m(0)‖.

Owing to (A4), we deduce that

(3.20) ‖v′′m(0)‖ ≤ C.

Also, taking the derivative of (3.6) with respect to time t and taking w = v′′m(t),
we get

(3.21)

d

dt

{

1

2
‖v′′m‖2 +M(‖∇v +∇φ‖2)

}

+

∫

Γ0

g(v′m + φ′)(v′′m)2dΓ

+

∫

Ω

f ′(vm + φ)(v′m + φ′)v′′mdΓ ≤ (F ′, v′′m) +
d

dt
(G′, v′m)Γ0

.

Next, we shall estimate some terms of (3.21).
Firstly, we estimate I8 =

∫

Ω
f ′(vm + φ)(v′m + φ′)v′′mdΓ.

Owing to (2.2), we get

(3.22) |I8| ≤ C

∫

Ω

(1 + |vm + φ|p−1)|v′m + φ′||v′′m|dx.

Noticing that p−1
2p + 1

2p + 1
2 = 1, from (3.21) and applying the generalized

Hölder’s inequality, we obtain

(3.23) |I8| ≤ C(‖v′m + φ′‖2 + ‖v′′m‖2) + C(‖vm + φ‖p−1
2p

p−1

‖v′m + φ′‖2p‖v
′′
m‖).

Since p ≤ n
n−2 and Sobolev embedding theory (see [2]), we get

(3.24) H1
0 (Ω) →֒ L2p(Ω).

From (3.23) and (3.24), we obtain that

(3.25) |I8| ≤ C(1 + ‖v′′m‖2 + ‖∇v′m‖2).

Secondly, we estimate I9 =
∫

Γ0
g(v′m + φ′)(v′′m)2dΓ.

Noticing that g′(s) ≥ 0, we deduce that I9 ≥ 0.
Combining (3.21), (3.23) and (3.25), we get

(3.26)

d

dt

{

1

2
‖v′′m‖2 +M(‖∇v +∇φ‖2)

}

≤ ‖F ′‖2 +
d

dt
(G′, v′m)Γ0

+ C(1 + ‖v′′m‖2 + ‖∇v′m‖2).
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Integrating (3.26) over the interval (0, t), and noticing that (3.20) and v′m(0) =
0, it follows that

(3.27) ‖v′′m‖2+M(‖∇v +∇φ‖2) ≤ C+(G′, v′m)Γ0
+C

∫ t

0

(‖v′′m‖2+‖∇v′m‖2)ds.

Also, by Young’s inequality, we have

(3.28) (G′, v′m)Γ0
≤
C2

4ε
‖G′‖2Γ0

+ ε‖∇v′m‖2.

From (3.27), (3.28) and (A3), choosing ε > 0 sufficiently small enough and
applying Gronwall’s inequality, we get

(3.29) ‖v′′m‖2 + ‖∇v′m‖2 ≤ C.

Next, we shall prove existence of solutions and analyze the nonlinear terms
f, g, h.

Analysis of f :
From (2.4) and the First Estimate, we have

(3.30)

∫ t

0

∫

Ω

f(vm + φ)
p+1

p dxds ≤ C

∫ t

0

∫

Ω

(1 + |vm + φ|
p+1

p )dxds ≤ C.

The inequality (3.30) implies that

(3.31) {f(vm + φ)} is bounded in L
p+1

p (QT ),

where QT = Ω× (0, T ).
From (3.29), we can find a subsequence vm (still denote vm) such that

(3.32) vm → v strong in L2(QT ),

then, vm → v a.e in QT . Hence, we get

(3.33) f(vm + φ) → f(v + φ) a.e in QT .

Due to (3.31), (3.33) and applying Lions lemma (see [16]), we deduce

(3.34) f(vm + φ) → f(v + φ) weakly in L
p+1

p (QT ).

Analysis of g:
From the First Estimate, we obtain

(3.35) {g(v′m + φ′)} is bounded in L
q+1

q (Σ),

where Σ = Γ0 × (0, T ). So, there exists ̺ ∈ L
q+1

q (Σ), such that

(3.36) g(v′m + φ′) → ̺ weakly in L
q+1

q (Σ).

From the First and Second Estimate, and Sobolev embedding theory, it is easy
to see that

v′m → v in L2(0,∞, L2(Ω)).
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We also notice that
∫

Γ0

|g(v′m + φ′)|2dΓ =

∫

|v′

m
+φ′|≤1

|g(v′m + φ′)|2dΓ +

∫

|v′

m
+φ′|>1

|g(v′m + φ′)|2dΓ

≤ C + C‖v′m + φ′‖2q2q,Γ0

≤ C + C‖∇v′m +∇φ′‖2q

≤ C.

Then, we deduce that

(3.37) g(v′m + φ′) → ̺ weakly in L2(Σ).

Analysis of M(‖∇u‖2) :
From now on we are interested in the convergence of the nonlinear term.
We define

(3.38) ψm(t) = ‖∇vm(t)‖2, t ∈ [0, T ].

From the second estimate we obtain

(3.39) |ψm(t)| ≤ C, ∀m ∈ N, t ∈ [0, T ].

Now, if t1, t2 ∈ [0, T ], we can get

(3.40) |ψm(t1)− ψm(t2)| ≤

∫ t2

t1

|ψ′
m(s)|ds.

On the other hand, from the above estimates we deduce

(3.41) ψ′
m(s) = 2(∇vm(s),∇v′m(s)) ≤ C.

From (3.40) and (3.41), it follows that

(3.42) |ψm(t1)− ψm(t2)| ≤ C|t1 − t2|.

Then, owing to (3.39) and (3.42) by Arezela-Ascoli’s theorem [29], there exists
a continuous function ψ : [0, T ] → R such that

(3.43) ψm(t) → ψ(t)

uniformly in [0, T ] and, since (A3), we have

(3.44) M(|ψm(t)|) →M(|ψ(t)|)

uniformly in [0, T ].
Also, we note that from the first and second estimates and noticing that

‖v‖
H

1
2 (Γ0)

≤ C|∇v| for all v ∈ V, we get

(3.45)
{vm} is bounded in L2(0, T ;H

1
2 (Γ0)),

{v′m} is bounded in L2(0, T ;L2(Γ0)).
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Because of the injection H
1
2 (Γ0) →֒ L2(Γ0) is continuous and compact, making

use of Aubin-Lions theorem [17], there exists a subsequence of vm (still denote
vm) such that

(3.46) vm → v strongly in L2(0, T ;L2(Γ0)).

From Analysis of f and above convergence, we get

(3.47) v′′m → v′′ weakly in L2(0, T, L2(Ω)).

So, we can pass to the limit in the approximate system given by (3.6) using
standard arguments in order to obtain

(3.48) utt −M(‖∇u‖2)△ u+ αut + f(u) = 0 in L2(0, T, L2(Ω)).

Also, we have

(3.49)
∂v

∂ν
+ ̺ = G in L2(0,∞, L2(Γ0)).

Indeed, we consider w = vm in (3.6) and integrate over (0, T ), then we get

(3.50)

∫ T

0

(v′′m, vm)dt+

∫ T

0

M(‖∇v +∇φ‖2)|∇vm|2dt+ α

∫ T

0

(v′m, vm)dt

+

∫ T

0

(f(vm + φ), vm)dt

=

∫ T

0

(F , vm)dt+

∫ T

0

(G, vm)Γ0
dt.

Combining above estimate and convergence, we deduce that

(3.51) v′′m → v′′ weakly in L2(0, T, L2(Ω)).

Hence, we can pass to the limit in (3.50) to deduce that

v′′ −M(‖∇v +∇φ‖2)△v + αv′ + f(v + φ) = F ∈ L2(0,∞;H).

Next, we shall show ̺ = g(v + φ′). For this goal, we shall use monotonicity
arguments.

First of all, we notice that from the First and Second estimates and applying
Aubin-Lions Theorem (see [17]), then we have

(3.52) v′m → v′ weakly in L2(0, T ;H).

Considering w = v′m in (3.6), integrating over [0, T ], we deduce

v′′ −M(‖∇v +∇φ‖2)△v + αv′ + f(v + φ) = F ∈ L2(0,∞;H),

∂v

∂ν
+ ̺ = G ∈ L2(0,∞;L2(Γ0)).

Also, we have

(3.53) lim
m→∞

∫ T

0

(g(v′m + φ′), v′m + φ′)dt =

∫ T

0

(̺, v′ + φ′)Γ0
dt.
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Owing to function g is a non-decreasing monotone function, we have
∫ T

0

〈g(v′m + φ′)− g(ψ), v′m + φ′ − ψ〉dt ≥ 0, ∀ψ ∈ Lq+1(Γ0),

where 〈·, ·〉 means the duality between Sobolev spaces L
q+1

q (Γ0) and L
q+1(Γ0).

So, we deduce

(3.54)

∫ T

0

〈g(v′m + φ′), ψ〉dt +

∫ T

0

〈g(ψ), v′m + φ′ − ψ〉dt

≤

∫ T

0

〈g(v′m + φ′), v′m + φ′〉dt.

From (3.54), we get

(3.55)

lim
m→∞

inf

∫ T

0

〈g(v′m + φ′), ψ〉dt+ lim
m→∞

inf

∫ T

0

〈g(ψ), v′m + φ′ − ψ〉dt

≤ lim
m→∞

inf

∫ T

0

〈g(v′m + φ′), v′m + φ′〉dt.

Since

‖vm‖q+1,Γ0
≤ C‖∇v′m‖ ≤ C,

then, it follows that

(3.56) v′m → v′ weakly star in L∞(0, T ;Lq+1(Γ0)).

From (3.51), (3.53), (3.55) and (3.56), we obtain

(3.57)

∫ T

0

〈̺− g(ψ), v′m + φ′ − ψ〉dt ≥ 0.

Finally, we apply the monotone method to obtain ̺ = g(v′ + φ′).
Setting ψ = (v′ + φ′) + λξ in (3.57), where ξ is an arbitrary element of

Lq+1(Γ0) and λ > 0, we obtain
∫ T

0

〈̺− g(v′ + φ′ + λξ),−λξ〉dt ≥ 0.

So,
∫ T

0

〈̺− g(v′ + φ′ + λξ),−ξ〉dt ≤ 0, ∀ξ ∈ Lq+1(Γ0).

As for the operator

g : Lq+1(Γ0) → L
q+1

q (Γ0) : v| → g(v)

is hemi-continuous and we get
∫ T

0

〈̺− g(v′ + φ′), ξ〉dt ≤ 0, ∀ξ ∈ Lq+1(Γ0).
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Also, we have
∫ T

0

〈̺− g(v′ + φ′), ξ〉dt ≥ 0, ∀ξ ∈ Lq+1(Γ0).

Hence,
∫ T

0

〈̺− g(v′ + φ′), ξ〉dt = 0, ∀ξ ∈ Lq+1(Γ0),

which implies

(3.58) ̺ = g(v′ + φ′).

Uniqueness:
Let u1 and u2 be two smooth solutions to problem (1.1), then, z = u1 − u2

satisfies
(3.59)

(z′′, w) +M(‖∇u2‖
2)(∇z,∇w) + (M(‖∇u2‖

2)−M(‖∇u1‖
2))(∇u1,∇w)

+ (αz′, w) + (g(u′1)− g(u′2), w)Γ0
= (f(u2)− f(u1), w), ∀w ∈ V,

z(0) = z′(0) = 0.

Putting w = z′(t) in (3.59), we deduce
(3.60)

1

2

d

dt
{‖z′‖2 +M(‖∇u2‖

2)(∇z,∇z′) + (αz′, z′) + (g(u′1)− g(u′2), z
′)Γ0

= (f(u2)− f(u1), w) + (M(‖∇u1‖
2)−M(‖∇u2‖

2))(∇u1,∇z
′).

Next, we estimate the terms in the right hand side of (3.55).

Estimate for J1 = (f(u2) − f(u1), z
′)

From (2.5), we get

(3.61)

|J1| ≤ C

∫

Ω

(|u2|
p−1 + |u1|

p−1)|z||z′|dx

≤ C(‖u2‖2p + ‖u1‖2p)‖z‖2p‖z
′‖

≤ C(‖∇z‖2 + ‖z′‖2).

Estimate for J2 = |M(‖∇u1‖
2) − M(‖∇u2‖

2)|
Since M is C1, we get

(3.62)

|J2| ≤ C|‖∇u1‖
2 − ‖∇u2‖

2|

≤ C(‖∇u1‖+ ‖∇u2‖)(‖∇u1‖ − ‖∇u2‖)

≤ C(‖∇z‖2 + ‖z′‖2).

From (A4), (3.60)-(3.62), observing that g is monotone function and making
using of Gronwall’s inequality, we deduce ‖∇z‖ = ‖z′‖ = 0 and so, u2 = u1.

Then, we complete the proof of existence and uniqueness of smooth solutions.

Existence of Weak Solutions



202 ZAI-YUN ZHANG AND JIAN-HUA HUANG

Consider

(3.63) {u0, u1} ∈ V ×H

and set
D(−△) = {v ∈ V ∩H2(Ω); ∂v

∂ν
= 0 on Γ0}.

Due to Sobolev space theory (see [4]), we get

D(−△) is dense in V and H1
0 (Ω) ∩H

2(Ω) is dense in H,

then, there exist {u0µ} ⊂ D(−△) and {u1µ} ⊂ H1
0 (Ω) ∩H

2(Ω), such that

(3.64) u0µ → u0 strongly in V,

(3.65) u1µ → u1 strongly in H.

Furthermore, ∂u0

∂ν
+ g(u1µ) = 0 on Γ0. Therefore, there exists uµ : Q → R

smooth solution of problem (1.1) satisfying

(3.66)















u′′µ −M(‖∇uµ‖
2)△uµ + αu′µ + f(uµ) = 0 in L2([0,∞;H),

uµ = 0 on Γ1,
∂uµ

∂ν
+ g(u′µ) = 0 on L2([0,∞;L2(Γ0)),

uµ(0) = u0µ, u
′
µ(0) = u1µ.

Repeating the same discussions, we get

(3.67) ‖u′µ‖
2+M(‖∇uµ‖2)+

∫ t

0

∫

Ω

|uµ|
p+1dxdt+

∫ t

0

∫

Γ0

|g(u′µ)|
q+1

q dΓds ≤ C,

and

(3.68)

∫ t

0

∫

Ω

|f(uµ)|
p+1

p dxds ≤ C,

(3.69)

∫ t

0

∫

Γ0

|u′µ|
q+1dΓds ≤ C,

for all t ∈ [0, T ] and µ ∈ N.

Setting zµσ = uµ−uσ, µ, σ ∈ N, where uµ, uσ are smooth solutions of (3.66).
Repeating the same discussions used in the existence and uniqueness of

strong solutions, we deduce that there exists u : Q→ R such that

(3.70) uµ → u in L∞([0, T ];V ),

(3.71) u′µ → u′ in L∞([0, T ];H).

Furthermore, from (3.67), (3.70) and (2.6), we get

(3.72) u′µ → u′ weakly in Lq+1(Σ),

(3.73) f(uµ) → η weakly in L
p+1

p (QT ),

(3.74) g(u′µ) → χ weakly in L
q+1

q (Σ).
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From (3.66) and Lion’s Lemma (see [17]), it is easy to obtain that η = f(u).
Furthermore, we have

(3.75)

{

utt −M(‖∇u‖2)△ u+ αut + f(u) = 0,
u(x, 0) = u0, ut(x, 0) = u1.

Next, we shall prove χ = g(u′).
Indeed, multiplying the first equation (3.66) by uµ and integrating over Ω,

we obtain

1

2

d

dt
{‖u′µ‖

2 +M(‖∇uµ‖2)}+ α‖u′µ‖
2

+ (f(uµ), u
′
µ) + (g(u′µ), u

′
µ)Γ0

= 0.

Also, we have

(3.76)

1

2
‖u′µ‖

2 +
1

2
M(‖∇uµ‖2) + α

∫ t

0

‖u′µ‖
2 +

∫ t

0

(f(uµ(s)), u
′
µ(s))ds

+

∫ t

0

(g(u′µ(s)), u
′
µ(s))Γ0

ds

=
1

2
‖u1µ‖

2 +
1

2
‖∇u0µ‖

2 +
1

2
M(‖∇u0µ‖

2).

From (3.65), (3.66), (3.68), (3.69), (3.71), (3.73) and (3.76), we deduce

(3.77)

lim
µ→∞

∫ t

0

(g(u′µ(s)), u
′
µ(s))Γ0

ds

=
1

2
‖u1‖2 +

1

2
‖∇u0‖2 −

1

2
‖u′‖2 −

1

2
M(‖∇u‖2) + α‖u′‖2

−

∫ t

0

(f(u(s)), u′(s))ds +
1

2
M(‖∇u0µ‖

2).

At the same time, assuming that ω is a weak solution to problem

(3.78)















ω′′ −M(‖∇ω‖2)△ω + αω′ + f(ω) = 0 in Ω× (0,∞),
ω = 0 on Γ1 × (0,∞),
∂ω
∂ν

+ χ = 0 on Γ0 × (0,∞),
ω(0) = u0, ω′(0) = u1,

then, we have

(3.79)

∫ t

0

(χ(s)), ω′(s))Γ0
ds

=
1

2
‖u1‖2 +

1

2
‖∇u0‖2 −

1

2
‖ω′‖2 +M(‖∇ω‖2)− α‖ω′‖2

−

∫ t

0

(f(ω(s)), ω′(s))ds.
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Since u is a weak solution to problem (3.78), hence, from (3.77) and (3.79), we
get

lim
µ→∞

∫ t

0

(g(u′µ(s)), u
′
µ(s))Γ0

ds =

∫ t

0

(χ(s)), u′(s))Γ0
ds.

According to the above arguments, it is easy to show that χ = g(u′).

Remark 3.1. For the uniqueness of weak solutions, we require a regularization
procedure using standard arguments (see [17]).
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