• Title/Summary/Keyword: Approximation equation

Search Result 666, Processing Time 0.027 seconds

The study of electron transport coefficients in pure Xe by 2-term approximation of the Boltzmann equation (2항근사 볼츠만 방정식을 이용한 Xe분자가스의 전자수송계수의 해석)

  • Ma, Su-Young;Jeon, Byung-Hoon;Kim, Song-Gang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.174-177
    • /
    • 2001
  • The electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient $ND_L$ and $D_L/{\mu}$, in pure Xe were calculated over the wide E/N range from 0.01 to 500 Td at 1 Torr by two-term approximation of the Boltzmann equation for determination of electron collision cross sections set and for quantitative characteristic analysis of Xe molecular gas.

  • PDF

The study of electron transport coefficients in pure Ne by 2-term approximation of the Boltzmann equation (2항근사 볼츠만 방정식을 이용한 Ne분자가스의 전자수송계수의 해석)

  • Jeon, Byung-Hoon;Gang, Myung-Hee;Kim, Song-Gang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.182-185
    • /
    • 2001
  • The electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient $ND_L$ and $D_L/{\mu}$, in pure Ne were calculated over the wide E/N range from 0.01 to 300 Td at 1 Torr by two-term approximation of the Boltzmann equation for determination of electron collision cross sections set and for quantitative characteristic analysis of Ne molecular gas.

  • PDF

The study of electron transport coefficients in pure $CF_4$ by 2-term approximation of the Boltzmann equation (2항근사 볼츠만 방정식을 이용한 $CF_4$분자가스의 전자수송계수의 해석)

  • Jeon, Byung-Hoon;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.29-32
    • /
    • 2001
  • We measured the electron transport coefficients(the electron drift velocity, W, and the longitudinal diffusion coefficient, $D_L$) in pure $CF_4$ over the E/N range from 0.04 Td to 250 Td by the double shutter drift tube. And these electron transport coefficients in pure $CF_4$ were calculated over the E/N range from 0.01 to 250 Td at 1 Torr by using the two-term approximation of the Boltzmann equation.

  • PDF

APPROXIMATION SCHEME FOR A CONTROL SYSTEM

  • KANG, SUNG-KWON
    • Honam Mathematical Journal
    • /
    • v.16 no.1
    • /
    • pp.103-109
    • /
    • 1994
  • Piezoceramic patches as collocated actuator and sensors are widely used in mechanical control systems. An approximation scheme for computing feedback gains arising in heat flux stabilization problem with such control mechanism is introduced. The scheme is based on a finite element method and a variational approach.

  • PDF

AN ASYMPTOTIC FINITE ELEMENT METHOD FOR SINGULARLY PERTURBED HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION-DIFFUSION TYPE WITH DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1057-1069
    • /
    • 2008
  • We consider singularly perturbed Boundary Value Problems (BVPs) for third and fourth order Ordinary Differential Equations(ODEs) of convection-diffusion type with discontinuous source term and a small positive parameter multiplying the highest derivative. Because of the type of Boundary Conditions(BCs) imposed on these equations these problems can be transformed into weakly coupled systems. In this system, the first equation does not have the small parameter but the second contains it. In this paper a computational method named as 'An asymptotic finite element method' for solving these systems is presented. In this method we first find an zero order asymptotic approximation to the solution and then the system is decoupled by replacing the first component of the solution by this approximation in the second equation. Then the second equation is independently solved by a fitted mesh Finite Element Method (FEM). Numerical experiments support our theoritical results.

  • PDF

APPROXIMATIONS OF SOLUTIONS FOR A NONLOCAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH DEVIATED ARGUMENT

  • CHADHA, ALKA;PANDEY, DWIJENDRA N.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.5_6
    • /
    • pp.699-721
    • /
    • 2015
  • This paper investigates the existence of mild solution for a fractional integro-differential equations with a deviating argument and nonlocal initial condition in an arbitrary separable Hilbert space H via technique of approximations. We obtain an associated integral equation and then consider a sequence of approximate integral equations obtained by the projection of considered associated nonlocal fractional integral equation onto finite dimensional space. The existence and uniqueness of solutions to each approximate integral equation is obtained by virtue of the analytic semigroup theory via Banach fixed point theorem. Next we demonstrate the convergence of the solutions of the approximate integral equations to the solution of the associated integral equation. We consider the Faedo-Galerkin approximation of the solution and demonstrate some convergenceresults. An example is also given to illustrate the abstract theory.

Dynamic Analysis of MLS Difference Method using First Order Differential Approximation (1차 미분 근사를 이용한 MLS차분법의 동적해석)

  • Kim, Kyeong-Hwan;Yoon, Young-Cheol;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.331-337
    • /
    • 2018
  • This paper presents dynamic algorithm of the MLS(moving least squares) difference method using first order differential Approximation. The governing equations are only discretized by the first order MLS derivative approximation. The system equation consists of an assembly of the approximate function, so the shape of system equation is similar to FEM(finite element method). The CDM(central difference method) is used for time integration of dynamic equilibrium equation. The natural frequency analyses of the MLS difference method and FEM are performed, and two analysis results are compared. Also, the accuracy of the proposed numerical method is verified by displaying the dynamic analysis results together with the results by the existing second order differential approximation. In the process of assembling the first order MLS derivative approximation, the oscillation error was suppressed and the stress distribution was interpreted as relatively uniform.

Analytic Error Caused by the Inconsistency of the Approximation Order between the Non Local Boundary Condition and the Parabolic Governing Equation (포물선 지배 방정식과 비국소적 경계조건의 근사 차수 불일치에 의한 해석적 오차)

  • Lee Keun-Hwa;Seong Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.229-238
    • /
    • 2006
  • This paper shows the analytic error caused by the inconsistency of the approximation order between the non local boundary condition (NLBC) and the parabolic governing equation. To obtain the analytic error, we first transform the NLBC to the half space domain using plane wave analysis. Then, the analytic error is derived on the boundary between the true numerical domain and the half space domain equivalent to the NLBC. The derived analytic error is physically expressed as the artificial reflection. We examine the characteristic of the analytic error for the grazing angle, the approximation order of the PE or the NLBC. Our main contribution is to present the analytic method of error estimation and the application limit for the high order parabolic equation and the NLBC.

Characterization of Radial Stress in Curved Beams

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.128-136
    • /
    • 2009
  • Curved glued laminated timber (glulam) is rapidly coming into the domestic modern timber frame buildings and predominant in building construction. The radial stress is frequently occurred in curved beams and is a critical design parameter in curved glulam. Three models, Wilson equation, Exact solution and Approximation equation were introduced to determine the radial stress of curved glulam under pure bending condition. It is obvious that radial stress distribution between small radius and large radius was different due to slight change of neutral plane location to center line. If the beam design with extremely small radius, it should be considered to determine the exact location of maximum radial stress. The current standard KSF 3021 was reviewed and would be considered some adjustment determining the optimum radius in curved glulam. Current design principle is that the stress factor is given by the curvature term only in constant depth of the beam, but like tapered or small radius of beams, the stress factor by Wilson equation was underestimated. So current design formula should be considered to improvement for characterizing the radial stress factor under pure bending condition.

APPROXIMATED SEPARATION FORMULA FOR THE HELMHOLTZ EQUATION

  • Lee, Ju-Hyun;Jeong, Nayoung;Kang, Sungkwon
    • Honam Mathematical Journal
    • /
    • v.41 no.2
    • /
    • pp.403-420
    • /
    • 2019
  • The Helmholtz equation represents acoustic or electromagnetic scattering phenomena. The Method of Lines are known to have many advantages in simulation of forward and inverse scattering problems due to the usage of angle rays and Bessel functions. However, the method does not account for the jump phenomena on obstacle boundary and the approximation includes many high order Bessel functions. The high order Bessel functions have extreme blow-up or die-out features in resonance region obstacle boundary. Therefore, in particular, when we consider shape reconstruction problems, the method is suffered from severe instabilities due to the logical confliction and the severe singularities of high order Bessel functions. In this paper, two approximation formulas for the Helmholtz equation are introduced. The formulas are new and powerful. The derivation is based on Method of Lines, Huygen's principle, boundary jump relations, Addition Formula, and the orthogonality of the trigonometric functions. The formulas reduce the approximation dimension significantly so that only lower order Bessel functions are required. They overcome the severe instability near the obstacle boundary and reduce the computational time significantly. The convergence is exponential. The formulas adopt the scattering jump phenomena on the boundary, and separate the boundary information from the measured scattered fields. Thus, the sensitivities of the scattered fields caused by the boundary changes can be analyzed easily. Several numerical experiments are performed. The results show the superiority of the proposed formulas in accuracy, efficiency, and stability.