• 제목/요약/키워드: Approximated likelihood

검색결과 41건 처리시간 0.024초

A Unit Root Test for Multivariate Autoregressive Model with Multiple Unit Roots

  • Shin, Key-Il
    • Journal of the Korean Statistical Society
    • /
    • 제26권3호
    • /
    • pp.397-405
    • /
    • 1997
  • Recently maximum likelihood estimators using unconditional likelihood function are used for testing unit roots. When one wants to use this method the determinant term of initial values in the multivariate unconditional likelihood function produces a complicated function of the elements in the coefficient matrix and variance matrix. In this paper an approximation of the determinant term is calculated and based on this aproximation an approximated unconditional likelihood function is calculated. The approximated unconditional maximum likelihood estimators can be used to test for unit roots. When multivariate process has one unit root the limiting distribution obtained by this method and the limiting distribution using exact unconditional likelihood function are the same.

  • PDF

근사적 우도함수를 이용한 Neyman-Scott 구형펄스모형의 공간구조 분석 (A spatial analysis of Neyman-Scott rectangular pulses model using an approximate likelihood function)

  • 이정진;김용구
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1119-1131
    • /
    • 2016
  • Neyman-Scott 구형펄스모형 (Neyman-Scott rectangular pulses model; NSRPM)은 강우의 발생, 강우세포의 강우강도 그리고 지속시간으로 표현되는 점과정에 기초한 강우생성 모형으로, 기존의 구형펄스모형 (rectangular pulse model)과 비교해서 강우사상의 군집특성을 잘 반영하기 때문에 여러 연구에서 많이 사용되는 모형이다. 하지만 NSRPM의 매개변수를 추정하는데 있어서 모멘트를 이용한 여러가지 최적화 기법들은 그 계산이 복잡하고 또한 목적함수의 구성에 따라 추정값의 변동도 크게 나타난다. 이를 보완하기 위해서, 최근 누적강수량에 대한 근사적인 우도함수 (approximated likelihood function)와 이를 통해 NSRPM의 매개변수를 추정하는 방법이 소개되었다. 본 논문에선 이 근사적 우도함수를 바탕으로 계층적 베이지안 모형을 이용하여 NSRPM에 공간구조를 표현하고 이를 통해 강우생성 모형의 공간적 특성을 알아보고자 한다.

Neyman-Scott Rectangular Pulse Model에 대한 통계적 추론 (A statistical inference for Neyman-Scott Rectangular Pulse model)

  • 김남희;김용구
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.887-896
    • /
    • 2016
  • 대표적인 강우생성 모형인 Neyman-Scott 구형펄스모형은 점과정(point process)을 이용하여 강우를 생성하는 모형으로 강우의 발생, 강우세포의 강우강도 그리고 지속시간의 분포로 표현된다. 특히 이 모형은 구형펄스모형(rectangular pulse model)에서 포함하지 않았던 강우사상의 군집특성을 반영하였다는 장점을 가지고 있다. NSRPM의 매개변수를 추정하는데 있어 moment를 이용한 여러가지 최적화 기법들이 연구되어 왔는데, 이러한 방법들은 목적함수를 추가하거나 조정하기 위해서는 복잡한 수식을 다시 계산하여야 하는 단점이 있으며, 전체적인 강우의 특성을 반영하기 어렵고 스케일에 따른 추정값의 변동도 크게 나타난다. 또한 moment를 이용한 추정값은 추정오차를 구할 수 없기 때문에 신뢰구간을 구할 수 없다는 단점이 있다. 이에 본 연구에서는 누적강수량에 대한 근사적인 우도함수(approximated likelihood function)를 소개하고 이를 통해 NSRPM의 매개변수를 추정하고자 한다. 또한 분석에 사용되는 누적강수량의 시간 스케일에 따른 추정치의 변동성도 함께 알아보고자 한다.

Sequential Estimation in Exponential Distribution

  • Park, Sang-Un
    • Communications for Statistical Applications and Methods
    • /
    • 제14권2호
    • /
    • pp.309-316
    • /
    • 2007
  • In this paper, we decompose the whole likelihood based on grouped data into conditional likelihoods and study the approximate contribution of additional inspection to the efficiency. We also combine the conditional maximum likelihood estimators to construct an approximate maximum likelihood estimator. For an exponential distribution, we see that a large inspection size does not increase the efficiency much if the failure rate is small, and the maximum likelihood estimator can be approximated with a linear function of inspection times.

System Reliability Estimation in Bivariate Pareto Model Affected by Common Stress : Bivariate Random Censored Data Case

  • Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.791-799
    • /
    • 2005
  • We consider two components parallel system in which the lifetimes have the bivariate Pareto model with bivariate random censored data. We assume that bivariate Pareto model is affected by common stress which is independent of the lifetimes of the components. We obtain estimators for the system reliability based on likelihood function and relative frequency. Also we construct approximated confidence intervals for the reliability based on maximum likelihood estimator and relative frequency estimator, respectively. Finally we present a numerical study.

  • PDF

부호화된 4+12+16 APSK를 위한 근사화된 연판정 디매핑 알고리즘 (Approximated Soft-Decision Demapping Algorithm for Coded 4+12+16 APSK)

  • 이재윤;장연수;윤동원
    • 한국통신학회논문지
    • /
    • 제37A권9호
    • /
    • pp.738-745
    • /
    • 2012
  • 본 논문에서는 부호화된 4+12+16 APSK에 대하여 낮은 복잡도를 갖는 근사화된 연판정 디매핑 알고리즘을 제안한다. 제안된 알고리즘을 도출하기 위해 4+12+16 APSK의 결정 경계를 근사화하고, 그 근사화된 결정 경계로부터 각 비트에 대한 LLR 값을 계산한다. 새롭게 제안된 알고리즘은 기존의 max-log 알고리즘보다 곱셈 계산 수를 상당히 줄여 수신기 복잡도를 크게 낮출 수 있으며, 낮은 복잡도로 인한 BER 성능 열화를 약 1.1dB 이하로 줄일 수 있다.

On the maximum likelihood estimation for a normal distribution under random censoring

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • 제25권6호
    • /
    • pp.647-658
    • /
    • 2018
  • In this paper, we study statistical inferences on the maximum likelihood estimation of a normal distribution when data are randomly censored. Likelihood equations are derived assuming that the censoring distribution does not involve any parameters of interest. The maximum likelihood estimators (MLEs) of the censored normal distribution do not have an explicit form, and it should be solved in an iterative way. We consider a simple method to derive an explicit form of the approximate MLEs with no iterations by expanding the nonlinear parts of the likelihood equations in Taylor series around some suitable points. The points are closely related to Kaplan-Meier estimators. By using the same method, the observed Fisher information is also approximated to obtain asymptotic variances of the estimators. An illustrative example is presented, and a simulation study is conducted to compare the performances of the estimators. In addition to their explicit form, the approximate MLEs are as efficient as the MLEs in terms of variances.

Reliability Estimation in Bivariate Pareto Model with Bivariate Type I Censored Data

  • Cho, Jang-Sik;Cho, Kil-Ho;Kang, Sang-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권4호
    • /
    • pp.837-844
    • /
    • 2003
  • In this paper, we obtain the estimator of system reliability for the bivariate Pareto model with bivariate type 1 censored data. We obtain the estimators and approximated confidence intervals of the reliability for the parallel system based on likelihood function and the relative frequency, respectively. Also we present a numerical example by giving a data set which is generated by computer.

  • PDF

Estimation for ordered means in normal distributions

  • Cho, Kil-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.951-958
    • /
    • 2010
  • In this paper, we obtain the restricted maximum likelihood estimators (RMLE's) for means in normal distributions with the ordered mean constraints. The biases and mean squared errors (MSE's) of these RMLE's are approximated by Mote Carlo methods. In every case a substantial savings in MSE is obtained at the expense of a small loss in bias when using RMLE's instead of the unrestricted MLE's.

Reliability for Series System in Bivariate Weibull Model under Bivariate Random Censorship

  • Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권1호
    • /
    • pp.219-226
    • /
    • 2004
  • In this paper, we consider two-components system which the lifetimes have a bivariate Weibull distribution with bivariate random censored data. Here the bivariate censoring times are independent of the lifetimes of the components. We obtain estimators and approximated confidence intervals for the reliability of series system based on likelihood function and relative frequency, respectively. Also we present a numerical study.

  • PDF