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Estimation for ordered means in normal distributions
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Abstract

In this paper, we obtain the restricted maximum likelihood estimators (RMLE’s) for
means in normal distributions with the ordered mean constraints. The biases and mean
squared errors (MSE’s) of these RMLE’s are approximated by Mote Carlo methods.
In every case a substantial savings in MSE is obtained at the expense of a small loss in
bias when using RMLE’s instead of the unrestricted MLE’s.
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1. Introduction

When we know explicit information about any parameters we want to find the estimators
under these informations. Hence it may be expected that the efficiency of our estimation is
increased by taking such information into account.

Many papers have been written on this topic (Barlow et al., 1972; Cho and Cho, 2006;
Cho et al., 2005; Cho and Kim, 2003; Croydon, 2010; Jeong et al., 2009; Kallenberg, 2002;
Rao, 1965).

Maximum likelihood estimation of increasing mean of the normal distributions was studied
in Bartholomew (1959).

Maximum likelihood estimators for Poisson parameters consisting of λ, λi, λij , i =

1, 2, · · · , n, j = 1, 2, · · · , ni subject to (a) λ̂ ≥
∑n

i=1 λ̂i, and subject to (a) and

(b) λ̂i ≥
∑ni

j=1 λ̂ij , j = 1, 2, · · · , ni are considered by Richard and Richard (1976).
In this paper, we obtain the restricted maximum likelihood estimators (RMLEs) for means

in the normal distributions with constraints as follows. Let x, xi, xij , i = 1, 2, · · · , n, j =
1, 2, · · · , ni, etc., be independently normal random variables with means µ, µi, µij , · · · ,
and common variance σ2. We can consider the parameter space with µ ≥

∑n
i=1 µi, µi ≥∑ni

j=1 µij , i = 1, 2, · · · , n, etc. However, in the restricted maximum likelihood estima-
tion, the sample estimates may turn out in reverse order. Thus we find the RMLE’s with
restrictions (1) µ̂ ≥

∑n
i=1 µ̂i and (2) µ̂i ≥

∑ni

j=1 µ̂ij , i = 1, 2, · · · , n, etc., to remove this
objectionable characteristics. Also, we compare the proposed RMLE’s with the unrestricted
maximum likelihood estimators in the sense of the biases and mean squared errors of these
estimators through the Mote Carlo methods.
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2. Restricted maximum likelihood estimators

Let x, xi, xij , i = 1, 2, · · · , n, j = 1, 2, · · · , ni, etc., be independently normal random
variables with means µ, µi, µij , · · · , and common variance σ2.

Consider the random samples of size p from each population, say,

x(1), x(2), · · · , x(p),
xi(1), xi(2), · · · , xi(p), i = 1, 2, · · · , n
xij(1), xij(2), · · · , xij(p), i = 1, 2, · · · , n, j = 1, 2, · · · ni,

etc.
Then the unrestricted maximum likelihood estimators for these means are the sample

means, that is,

p∑
k=1

x(k)/p, denote x̄, for µ

p∑
k=1

xi(k)/p, denote x̄i, for µi, i = 1, 2, · · · , n,

p∑
k=1

xij(k)/p, denote x̄ij , for µij , i = 1, 2, · · · , n, j = 1, 2, · · · , ni,

etc.
We wish to find the RMLE’s with restrictions

µ̂ ≥
n∑

i=1

µ̂i (2.1)

and

µ̂i ≥
ni∑
j=1

µ̂ij , i = 1, 2, · · · , n, (2.2)

etc.
For simplicity we find the RMLE’s in the case of three stages.
For three stages, the log likelihood function is

lnL(U2, σ
2, X2) =−

p(1 + n+
∑n

i=1 ni)

2
ln 2π −

p(1 + n+
∑n

i=1 ni)

2
lnσ2

−
1

2σ2

p∑
k=1

(x(k) − µ)2 −
1

2σ2

n∑
i=1

p∑
k=1

(xi(k) − µi)
2 (2.3)

−
1

2σ2

n∑
i=1

ni∑
j=1

p∑
k=1

(xij(k) − µij)
2
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where

U ′2 = (µ, µ1, · · · , µn, µ11, µ12, · · · , µn1, µn2, · · · , µnnn
),

X ′2 = (x(1), · · · , x1(1), · · · , x11(1), · · · , xnnn(p)).

It can be shown clearly that the log likelihood function is a strictly concave functions.
We consider various special cases.

Case 1 . If x̄ ≥
∑n

i=1 x̄i and x̄i ≥
∑ni

j=1 x̄ij for all i, then

µ̂ = x̄,

µ̂i = x̄i, i = 1, 2, · · · , n, (2.4)

µ̂ij = x̄ij , i = 1, 2, · · · , n, j = 1, 2, · · · , ni.

Case 2 . If x̄ ≥
∑n

i=1 x̄i but x̄i <
∑ni

j=1 x̄ij for some i, say, i = 1, 2, · · · , l, then

µ̂ = x̄,

µ̂i = x̄i, i = l + 1, 2, · · · , n,
µ̂ij = x̄ij , i = l + 1, 2, · · · , n, j = 1, 2, · · · , ni, (2.5)

µ̂i = x̄i − (x̄i −
ni∑
j=1

x̄ij)/(ni + 1), i = 1, 2, · · · , l,

µ̂ij = x̄ij + (x̄i −
ni∑
j=1

x̄ij)/(ni + 1), i = 1, 2, · · · , l, j = 1, 2, · · · , ni.

If (2.5) satisfies (2.1) and (2.2), we are done.
However, since µ̂i > x̄i, i = 1, 2, · · · , l, (2.1) may fail.
If (2.1) fails, proceed as in Case 4.

Case 3 . If x̄ <
∑n

i=1 x̄i and x̄i ≥
∑ni

j=1 x̄ij for all i, then

µ̂ = x̄− (x̄−
n∑

i=1

x̄i)/(n+ 1),

µ̂i = x̄i + (x̄−
n∑

i=1

x̄i)/(n+ 1), i = 1, 2, · · · , n, (2.6)

µ̂ij = x̄ij , i = 1, 2, · · · , n, j = 1, 2, · · · , ni.

If (2.6) satisfies (2.1) and (2.2), we are done. However, since µ̂i < x̄i, it may that (2.2)
fails to hold for some i. If (2.2) fails for some i, proceed as in Case 4.



954 Kil Ho Cho

Case 4 . If x̄ <
∑n

i=1 x̄i and x̄i <
∑ni

j=1 x̄ij for i = 1, 2, · · · , l, or if (2.1) fails for Case
2, or if (2.2) fails for Case 3, then (2.3) can be converted as follows.

lnL(U2, σ
2, X2) =−

p(1 + n+
∑n

i=1 ni)

2
ln 2π −

p(1 + n+
∑n

i=1 ni)

2
lnσ2

−
1

2σ2

p∑
k=1

(x(k) −
l∑

i=1

ni∑
j=1

µij −
n∑

i=l+1

µi)
2

−
1

2σ2

n∑
i=1

p∑
k=1

(xi(k) −
ni∑
j=1

µij)
2 −

1

2σ2

n∑
i=l+1

p∑
k=1

(xi(k) − µi)
2 (2.7)

−
1

2σ2

n∑
i=1

ni∑
j=1

p∑
k=1

(xij(k) − µij)
2.

Setting the partial derivative with respect to each parameter equal to zero, we obtain the
following estimators

µ̂ij = (x̄+ x̄i + x̄ij)− (µ̂+ µ̂i), i = 1, 2, · · · , l, j = 1, 2, · · · , ni,
µ̂ij = x̄ij , i = l + 1, 2, · · · , l, j = 1, 2, · · · , ni,

µ̂i = (nix̄+ nix̄i +

ni∑
j=1

x̄ij)/(ni + 1)−
ni

ni + 1
µ̂, i = 1, 2, · · · , l,

µ̂i = (x̄+ x̄i)− µ̂, i = l + 1, · · · , n,

µ̂ = (S + T )/[

l∑
i=1

(ni/(ni + 1)) + (n− l + 1)],

where

S =

l∑
i=1

[nix̄+ nix̄i +

ni∑
j=1

x̄ij)/(ni + 1)], (2.8)

T =

n∑
i=l+1

(x̄+ x̄i).

Also, we have

σ̂2 =
1

p(1 + n+
∑n

i=1 ni)
[

p∑
k=1

(x(k) − µ̂)2 +

n∑
i=1

p∑
k=1

(xi(k) − µ̂)2 +

n∑
i=1

ni∑
j=1

p∑
k=1

(xij(k) − µ̂ij)
2].

By the very way these solutions were found it follows that (2.1) is satisfied and (2.2) is
satisfied for i = 1, 2, · · · , l. However, it may be that (2.2) is violated for one or more values
of i > 1.

If, after performing the procedure described in Case 4, variables 1, 2, · · · , l are violators,
we find that variables l + 1 and l + 2 have become violators.
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Assume that U and A denote column vectors and that f(·) is a real valued function
defined on an appropriate subset of Rn.

Theorem 2.1 (Richard and Richard (1976)) Assume that f(U) is a strictly concave
function and that Uk maximizes f(U) subject to the constraints

A′iU ≤ bi, i = 1, 2, · · · , k.

If the additional constraint

A′k+1U ≤ bk + 1

is imposed, then

(1) If A′k+1Uk ≤ bk + 1, Uk + 1 = Uk :

(2) If A′k+1Uk > bk + 1, Ak + 1′Uk + 1 = bk + 1.

Corollary 2.2 (Richard and Richard, 1976) Theorem 2.1 still holds if the constraints
A′iU ≤ bi are replaced by A′iU = bi for i ∈ B where B ⊂ {1, 2, · · · k}.

Assume that U indicates the RMLE. Moreover, denote the constraint in (2.1) by C0,
and the constraint in (2.2) by C1, C2, · · · , Cn, respectively. We shall say a constraint
is imposed on a RMLE if equality actually holds in that constraint in the RMLE. Let F
denote the set of constraints imposed in constructing U, i.e., F = {Ci : equality holds in Ci

for U}.

Theorem 2.3 Let Ũ denote the intermediate solution for the RMLE’s obtained by
imposed constraints C where C ⊂ F. Then if Ũ violates Ci, Ci ∈ F.

Proof : Consider first the case where Ũ violates C0 and C0 6∈ F. Then

µ̂ >

n∑
i=1

µ̂i,

and hence

µ̃ = µ̂ = x̄.

Since C ⊂ F, Û is obtained by imposing lower levels, so that µ̂i ≥ µ̃i, i = 1, 2, · · · , n. This
leads to an immediate contradiction.

Next, consider the case where Ũ violates Ci (i > 0). If C0 6∈ F, i.e., µ̂ >
∑n

i=1 µi, then Ũ

and Û may be obtained by considering collections of unrelated two-stage problems. In this
case,

µ̃ij = x̄ij and µ̃i = x̄i,

so if Ũ violates Ci (i > 0), then Ci ∈ F.
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Thus, it now suffices to consider the case where C0 ∈ F. In fact, it suffices to consider
C0 ∈ C.

To see this, let U ′ denote the RMLE obtained by imposing C0 in addition to those con-
straints in C. In this event, since we must have µ′ ≥ x̄,

µ′i = (x̄+ x̄i)− µ′ ≤ x̄i = µ̃i.

However, µ′ij = µ̃ij = x̄ij , so that U ′ violates Ci whenever Ũ does.
Now let us construct the new intermediate solution, say, U∗ by imposing all constraints

in F with the exception of Ci. Note that in obtaining hatU , it would no matter if ≤ were
replaced by = for those constraints in any subset of F . Thus if

ni∑
j=1

µ∗ij > µ∗i, (2.9)

the Corollary 2.1 guarantees that Ci ∈ F.
Moreover, it will suffice to show that (2.9) holds when we impose only one additional

constraint belonging to F , since we can repeat the argument as many times as needed and
then use the above reasoning. Let the violators be relabeled, i.e., C = {C0, C1, · · · , Cl},
and let Cl + 1 be the additional constraints imposed in constructing U∗. Then we may
assume that Ũ violates Cl + 1, since if no other constraint except Ci was violated, repeated
use of the Corollary 2.2 and (2.9) would ensure that Ci ∈ F.

It will suffice to show that µ∗i ≤ µ̃i, since then (2.9) must hold. Also, by the formulas of
µ∗i and µ̃i, it will suffice to show that

µ∗ ≥ µ̃.

Assume that µ∗ < µ̃. Then
∑ni

j=1 µ̃l+1j < µ̃l + 1. This is inconsistent with the assumption

that Ũ violates Cl + 1. �

From Theorem 2.3, the optimal strategy is to repeat the procedure of Case 4 taking
variables 1, 2, · · · , l, l + 1, l + 2 as violators.

Of course it may happen that new violators are found in this case as well.
However, since n is a finite number, we can be sure that this procedure will lead to a

solution after a finite number of repetitions.
Similarly, the techniques used here would apply to four or more stages.

3. Simulated results

In this section, we compare the proposed RMLE’s with the unrestricted maximum like-
lihood estimators in the sense of the biases and mean squared errors of these estimators
through the Mote Carlo methods. For each set of parameters 10,000 trials were run.
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Table 3.1 Bias and MSE for µ̂ - two stages

µ Bias MSE
50 1.89 (0.13) 38.6 (1.35)
100 2.73 (0.18) 74.2 (1.52)
150 3.51 (0.19) 117.3 (2.02)
200 3.78 (0.22) 147.6 (2.78)

Table 3.2 Bias and MSE for µ̂i - two stages

µ µi Bias MSE
100 253540 -0.62 (0.09) -0.87 (0.10) -1.09 (0.12) 20.7 (0.81) 31.1 (0.82) 34.6 (0.97)
200 507080 -1.01 (0.12) -1.42 (0.15) -1.53 (0.17) 46.8 (1.21) 65.6 (1.38) 67.1 (1.62)

Table 3.3 Bias and MSE for µ̂, µ̂i, µ̂ij - three stages

Level Parameter Bias MSE

Top (µ)
150 5.12 (0.02) 109.51 (3.77)
200 5.63 (0.24) 135.10 (4.69)

Middle (µi)

50 0.74 (0.12) 27.32 (0.91)
50 0.79 (0.13) 28.77 (0.94)
100 0.51 (0.17) 45.17 (1.52)
150 -0.07 (0.19) 66.56 (2.09)

Bottom (µij)

20 -1.08 (0.09) 16.42 (0.50)
20 -0.92 (0.09) 16.68 (0.52)
30 -1.43 (0.11) 23.71 (0.84)
30 -1.40 (0.11) 24.87 (0.83)
35 -1.31 (0.12) 31.98 (0.94)
65 -2.23 (0.15) 52.30 (1.68)
50 -1.59 (0.14) 42.13 (1.29)
100 -3.12 (0.20) 82.26 (2.78)

Table 3.4 Parameters used in 3-stage Monte Carlo study

µ µ1 µ11 µ12 µ2 µ21 µ22
150 100 35 65 50 20 30
200 150 100 50 50 20 30

We see that a relatively large savings in MSE can be had in exchange for a relatively small
loss in bias. In the case for two stages, we know that the estimator for µ has a positive bias
while the estimators for µij have a negative bias. However, the Monte Carlo results indicate
that the bias of µ̂i is rather small relative to the bias in µ̂ and µ̂ij with a considerable savings
in MSE.

From Table 3.1 to Table 3.3, we see that a substantial saving in MSE is obtained at the
expense of a small loss in bias when we use RMLE’s instead of the unrestricted MLE’s in
every case.
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