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Abstract

In this paper, we consider two-components system which the lifetimes  
have a bivariate Weibull distribution with bivariate random censored data. 
Here the bivariate censoring times are independent of the lifetimes of the 
components. We obtain estimators and approximated confidence intervals 
for the reliability of series system based on likelihood function and 
relative frequency, respectively. Also we present a numerical study.
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1. Introduction

In many the aforementioned studies for the reliability of two-components 

system, the lifetimes of the components were assumed to be statistically 

independent for the sake of simplicity of mathematical treatment. But occasionally, 

independence assumption is not applicable in the practical situation. Naturally, it is 

more realistic to assume some forms of dependence among the components of the 

system. This dependence among the components arise from common environmental 

shocks and stress, or from components depending on common sources of power, 

and so on. (See Esary and Proschan (1970)). 

As the forms of dependence among the components in two-components system, 

Lu and Bhattacharyya (1988, 1990) and Lu (1989) initially introduced some new 

construction of bivariate Weibull(BVW) distributions as extensions of the Freund 

and Marshall-Olkin's bivariate exponential distributions. Also they obtained many 
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important properties of the BVW distribution. Bivariate Weibull distribution(BVW) 

is a versatile family of life distributions in view of its physical interpretation and 

its flexibility for empirical fit, and has been extensively applied to analysis of life 

data concerning many types of manufactured items. The examples of a bivariate 

Weibull distribution can be visualized in many contexts, such as the times to first 

and second failures of a repairable device, the breakdown times of dual generators 

in a power plant, or the survival times of the organs in a two-organ system, such 

as lungs or kidneys, in the human body.

Cho, Cha and Lee(2003) obtained the system reliability from stress-strength 

relationship. Cho, Cho and Kang(2003) constructed large sample tests for 

independence and symmetry. Also Cho, Kim and Kang(2003) obtained estimator for 

the reliability under univariate random censored data. All the authors mentioned 

above considered complete sample or univariate censored sample cases. 

In this paper, we derive maximum likelihood estimator and relative frequency 

estimator for the reliability of series system in the bivariate Weibull distribution 

with bivariate random censored data as extension of complete data and univariate 

censored data. And we construct approximated confidence intervals for the 

reliability of series system based on the asymptotic distribution of proposed 

estimators. Also we present a numerical example by giving a data set which is 

generated by computer.

2. Preliminaries

Let random vector (X,Y)  be lifetime of two components that follow a BVW 

distribution with parameter ( δ 1,δ 2,δ 3,ψ). Then the joint probability density 

function  of (X,Y)  is given as

     f(x,y:δ 1,δ 2,δ 3,ψ)  

        = {
δ 1(δ 2+δ 3)ψ

2x ψ-1y ψ- 1exp [-δ1x
ψ-(δ 2+δ 3)y

ψ
], 0 < x< y<∞,

δ 2(δ 1+δ 3)ψ
2x ψ-1y ψ- 1exp [-(δ 1+δ 3)x

ψ-δ 2y
ψ
], 0 < y< x<∞,

δ 3ψx
ψ-1exp [-δx ψ],0 < x= y<∞,

     (1)

where δ 1,δ 2,δ 3,ψ >0  and δ= δ1+δ2+δ3. 

And the joint survival function of (X,Y)  is given by

                    F(x,y)= P(X > x,Y > y)

                      = exp [-(δ 1x
ψ+δ 2y

ψ+δ3max(x,y)
ψ)].                  (2)

The above BVW distribution is not absolutely continuous with respect to 

Lebesgue measure on R 2. That is, there is provision for simultaneous failure of 

the both components, P[X=Y]= δ3/δ. Also the marginal distribution of X   is 

given by 

                  F(x )= P(X > x) = exp [-(δ 1+δ3)x
ψ
],                   (3)
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which is the survival function of Weibull with parameters (δ 1+δ3,ψ). By similar 

method, the marginal distribution of Y  is given as F(y )= P(Y > y)

= exp [-(δ2+δ3)y
ψ
]  which is the survival function of Weibull with parameters 

( δ 2+δ3,ψ).

From (1)-(3), random variables X  and Y  are independent if and only if δ 3= 0 . 

And X  and Y  are identically distributed if and only if δ 1= δ2. Also  BVW leads 

to the Marshall-Olkin's bivariate exponential distribution if and only if ψ=1.

On the other hand, the reliability of series system for mission time x o  is given 

by

                     R=P[min (X,Y) >  x o] = exp [-δx
ψ
o].               (4)

Suppose that there are n  two-components units under study and ith pair of 

the components have lifetime (x i,y i)  and a bivariate random censoring time ( t x i ,

t y i).

For j=1,2; k=1,2,3; i=1,2,…,n , we use following notations for convenience 

sake;

(I)   ( t x i, t y i) : bivariate random censoring times for ith system. 

(II)  C 1i= I(Xi> t x i) , C 2i= I(Yi > t y i), C
*
ji=1-Gji. 

(III) R 1i= I(Xi<Yi), R 2i= I(Xi>Yi), R 3i= I(Xi=Yi), R
*
ki=1-Rki.

(IV) Θ= (δ 1,δ 2,δ 3,θ 1,θ 2) .

Then ith observed lifetime (x i,y i)  is given by

                   (x i,y i) =  

ꀊ

ꀖ

ꀈ

︳︳

︳︳

 (x i,y i),   x i < t x i  , y i< t y i
 ( t x i,y i),   x i> t x i , y i< t y i
 (x i,t y i),   x i<t x i , y i> t y i
 ( t x i,t y i),   x i> t x i , y i> t y i ,

                     (5)

where the distribution and reliability function of bivariate random censoring 

times ( t x i, t y i)  are G 1(t x i :ψ,θ 1)⋅G 2(t y i :ψ,θ 2)  and g 1(t x i :ψ,θ1)⋅g 2(t y i :ψ,θ2), 

respectively. Where g 1(t x i :ψ,θ 1)  and g 2(t y i :ψ,θ2)  have independent Weibull 

distributions with parameters (ψ,θ1)  and (ψ,θ 2), respectively. 

If t x i= t y i  then the censoring scheme is univariate random censorship. And if t x i  

and t y i  are fixed constants then the censoring scheme is bivariate type I 

censorship. 

Hence the likelihood function is derived as follows; 
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      L(Θ)= ∏
n

i=1
{[ f(x i,y i)⋅G 1(x i ;ψ,θ 1)⋅G 2(y i ;ψ,θ 2)]

C*1iC
*
2i

             ⋅[ F (x i,y i)⋅g 1(x i ;ψ,θ1)⋅g 2(y i ;ψ,θ 2i)]
C 1iC 2i

             ⋅[ F X∣Y= y (x i )f Y(y i )⋅g 1(x i ;ψ,θ 1)⋅G 2(y i ;ψ,θ 2)]
C 1iC

*
2i

             ⋅[ F Y∣X= x (y i )f X(x i )⋅G 1(x i ;ψ,θ 1)⋅g 2(y i ;ψ,θ 2)]
C*1iC 2i}

(R 1i+R 2i+R 3i)

            =δ
D 1
1 δ

D 2
2 δ

D 3
3 (δ 1+δ 3)

D 4(δ 2+δ 3)
D 5ψ

D 6 ⋅θ
D 6
1 ⋅θ

D 7
2

             ⋅∏
n

i= 1
{x
( ψ- 1)(C1i+C

*
1i)

i y
( ψ - 1)(C2i+C

*
2i)( 1-R 3iC

*
1i)

i }

            ⋅exp[-(δ 1+θ1)x s-(δ2+θ2)y s-δ3(x s+ y s- t s)] ,                    (6)

where fX(x )= ψ(δ 1+δ3)x
ψ- 1
1 ⋅exp(-(δ 1+δ3)x

ψ) ,

     fY(y )= ψ(δ 2+δ 3)y
ψ- 1⋅exp (-(δ 2+δ 3)y

ψ),

     D 1= ∑
n

i=1
(R 1iC

*
1iC

*
2i+R

*
2iC

*
1iC 2i), D 2= ∑

n

i=1
(R 2iC

*
1iC

*
2i+R

*
1iC 1iC

*
2i),

     D 3= ∑
n

i=1
R 3iC

*
1iC

*
2i
, D 4= ∑

n

i=1
R 2iC

*
1i
, D 5= ∑

n

i=1
R 1iC

*
2i
,, D 6= ∑

n

i=1
C 1i, D 7= ∑

n

i=1
C 2i

     x s= ∑
n

i=1
xψi, y s= ∑

n

i=1
yψi, t s= ∑

n

i=1
min(x i,y i)

ψ .

Also D 1,D 2,…,D 7  are random variables. After some calculations, the expected 

value of each D i, i=1,2,…,5  can be obtained as follows;

E(D 1) = ∑
n

i=1
{δ 1/δ-δ1exp(-δ t

ψ
x i )/δ+ exp(-δ t

ψ
y i )- exp (-(δ 2+δ3) t

ψ
y i )

          +(1- exp (-δ1 t
ψ
x i ))⋅exp(-(δ 2+δ3) t

ψ
y i )⋅I( t x i< t y i)

          +δ3( exp (-δ t
ψ
y i )-exp (-δ t

ψ
x i ))/δ⋅I( t y i < t x i) } .

E(D 2)= ∑
n

i=1
{δ 2/δ-δ2exp(-δ t

ψ
y i )/δ+ exp(-(δ 1+δ3) t

ψ
x i-δ2 t

ψ
y i )

        - exp (-(δ 1+δ3) t
ψ
x i )

       +(1- exp(-δ2 t
ψ
y i ))⋅exp (-(δ 1+δ3) t

ψ
x i )⋅I( t y i< t x i )

       +δ3( exp (-δ t
ψ
x i )-exp (-δ t

ψ
y i )))/δ⋅I( t x i < t y i) } ,

E(D 3)= ∑
n

i=1
{(δ 3-δ3 exp(-δmin ( t

ψ
x i, t

ψ
y i )))/δ } ,                                     

      E(D 4)= ∑
n

i=1
{δ 2/δ-δ2exp(-δ t

ψ
y i )/δ+ exp(-(δ 1+δ3) t

ψ
x i-δ2 t

ψ
y i )                
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                  - exp (-(δ 1+δ3) t
ψ
x i ) +[ exp (-δ2 t

ψ
y i )⋅[1-exp(-(δ 1+δ3) t

ψ
x i )]    

                      +(δ 1+δ3)⋅( exp (-δ t
ψ
x i )-1)/δ]⋅I( t x i>t y i) } ,

E(D 5)= ∑
n

i=1
{δ 1/δ-δ1exp(-δ t

ψ
x i )/δ+ exp(-δ t

ψ
y i )- exp (-(δ 2+δ3) t

ψ
y i )

       +δ1 exp(-δ t
ψ
x i )/δ- exp (-(δ 2+δ 3) t

ψ
y i-δ1 t

ψ
x i ) } .

In this paper, we focus only on BVW with fixed ψ . Now the log-likelihood 

function of the sample of size n is given by

logL(Θ)=D 1logδ 1+D 2logδ 2+D 3logδ 3+D 4log (δ 1+δ3)+D 5log(δ 2+δ3)

         +D 6log(θ 1)+D 7log(θ2)

         +∑
n

i=1
{(ψ-1)(C 1i+C

*
1i) log (x i)+(ψ-1)(C 2i+C

*
2i)(1-R 3iC

*
1i) log (y i) }

         -(δ1+θ1)x s-(δ2+θ2)y s-δ3(x s+ y s- t s) .                               (7)

Hence, the likelihood equations are given by

                      ∂
∂δ1

logL(Θ)=
D 1
δ 1
+

D 4
δ 1+δ3

-x s=0.                       (8)

                      ∂
∂δ2

logL(Θ)=
D 2
δ 2
+

D 5
δ 2+δ3

-y s=0.                       (9)

              ∂
∂δ3

logL(Θ)=
D 3
δ 3
+

D 4
δ 1+δ3

+
D 5
δ 2+δ3

-(x s+y s- t s)= 0.          (10)

                         ∂
∂θ1

logL(Θ)=
D 6
θ 1
-x s=0.                            (11)

                          ∂
∂θ2

logL(Θ)=
D 7
θ 2
-y s=0,                            (12)

The likelihood equations (8)-(12) are not easy to solve. But we can obtain 

MLE's ( δ 1̂, δ 2̂, δ 3̂) by either Newton-Raphson procedure or Fisher's method of 

scoring. 

The Fisher information matrix is given by

           I(Θ)= ( ( I ij )) , where I ij=E[- ∂2

∂δ i∂δ j
logL(Θ)] ; i, j=1,2,3 , 

      I 11= E(D 1)/ δ
2
1+ E(D 4)/ (δ 1+δ3)

2, I 12= 0 , I 13=E(D 4)/(δ 1+δ3)
2,

         I 22=E(D 2)/δ
2
2+E(D 5)/(δ 2+δ3)

2, I 23=E(D 5)/(δ 2+δ3)
2, 

           I 33=E(D 3)/δ
2
3+E(D 4)/(δ 1+δ3)

2+E(D 5)/(δ 2+δ3)
2.           

Thus n( δ̂- δ)  has asymptotic trivariate normal distribution with mean 
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vector zero and covariance matrix I-1( δ)=
1
n
( ( I ij )) ; i, j= 1,2,3 . Here, 

δ̂= ( δ 1̂, δ 2̂, δ 3̂)  and δ= ( δ 1, δ 2, δ 3 ).

3. Reliability Estimation for Series System

In this section, we obtain estimators for R  based on the likelihood function and 

the relative frequency, respectively. Also we obtain approximated confidence 

intervals for R  based on MLE and the relative frequency estimator, respectively. 

For mission time x o , we note that MLE for reliability with series system by 

invariant properties of MLE is given by

                   R̂ MLE= exp [- δ̂⋅x
ψ
o],  δ̂= δ 1̂+ δ 2̂+ δ 3̂.                (13)

Hence, we can see that the distribution of R̂ MLE  is asymptotic normal 

distribution with mean R  and variance δ⋅[ I-1(δ 1,δ 2,δ 3)/n]⋅δ
'.

Here, δ= (- x
ψ
o⋅exp(-δx

ψ
o), - x

ψ
o⋅exp(-δx

ψ
o), - x

ψ
o⋅exp(-δx

ψ
o)). 

Therefore, 100(1-α)%   approximated confidence interval for R  based on MLE 

is as follows;             

( R̂ MLE- z α/2⋅ δ̂⋅I- 1( δ 1̂, δ 2̂, δ 3̂)⋅ δ̂
'
/n, R̂ MLE+ z α/2⋅ δ̂⋅I- 1( δ 1̂, δ 2̂, δ 3̂)⋅ δ̂

'
/n)
(14)

where δ̂= (- xψo⋅exp(- δ̂x
ψ
o), -x

ψ
o⋅exp(-δ̂x

ψ
o), - x

ψ
o⋅exp(- δ̂x

ψ
o)).

We next obtain the estimate and approximate confidence interval for R  based 

on relative frequency. Let K  be the number of observations with min(x i,y i) >  x o  

in the sample. Then we can see that the distribution of K  is binomial distribution 

with parameter ( n,R). 

The relative frequency estimate of R  based on K  is given by 

                          R̂ RF=K/n ,                             (15)

which is asymptotic normal distribution with mean R  and variance R(1-R )/n. 

Therefore, 100(1-α)%  approximated confidence interval for R  based on the 

relative frequency estimate is as follows;             

( R̂ RF- z α/2⋅ R̂ RF⋅(1- R̂ RF )/n , R̂ RF+ z α/2⋅ R̂ RF⋅(1- R̂ RF )/n).    (16)

4. Numerical Example

In this section, we present a numerical example by giving a data set which is 

generated by computer. We generate a random samples of size 30 from BVW 

with parameter ( δ 1= 1.8, δ 2= 1.8, δ 3= 1.3, ψ= 2.0). And we set the mission 
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time x o= 0.3 . Also we generate bivariate random censored data of sizes 30 

corresponding the lifetimes from Weibull with parameters θ1= 1.0, ψ= 2.0  and 

θ2= 1.0, ψ= 2.0 , respectively. Then the true reliability of series system is 0.6433. 

The data is given as Table 1. In Table 1, * indicates censored data.

 <Table 1> Generated samples from BVW

i x i y i i x i y i

1 0.5615 0.5615 16 0.2170 0.2170

2 0.9988 0.3872 17 0.4562 0.9376

3 0.4279 0.4279 18 0.2385 0.6478*

4 0.4925* 0.6374 19 0.3649* 0.4940*

5 0.2284 0.7062* 20 0.8273 0.8273

6 0.3118 0.9788 21 0.5209 0.4482

7 0.6650* 0.4179* 22 0.6323* 0.5326

8 0.5040* 0.4999* 23 0.7964* 0.2911

9 0.6340 0.6385* 24 0.4251 0.1443

10 0.1756 0.0377 25 0.2136 0.2136

11 0.3626 0.0951 26 0.3475 0.2341*

12 0.4775 0.5853 27 0.4342 0.2025

13 0.1026 0.1026 28 0.3254* 0.7310

14 0.2326 0.4510 29 0.7197 0.0800*

15 0.4406 0.4406 30 0.5992 0.5525*

 

MLE's of the parameters in BVW model are δ 1̂= 1.5788 , δ 2̂= 1.4003 , 

δ 3̂= 1.2721 . And K=17. Hence, the MLE and relative frequency estimator of R  

are R̂ MLE= 0.6820  and R̂ RF= 0.5667 , respectively. Also 95% confidence intervals 

for R  based on R̂ MLE  and R̂ RF  are (0.6062, 0.7579) and (0.3893, 0.7439), 

respectively.

Hence, we note that R̂ MLE  based on MLE's perform better than R̂ RF  based 

on relative frequency estimate in viewpoint of bias and confidence interval, more 

or less. 

In our discussions, we have concentrated on the bivariate Weibull model case. 

But we can apply our results, for a more general model.
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