DOI QR코드

DOI QR Code

A statistical inference for Neyman-Scott Rectangular Pulse model

Neyman-Scott Rectangular Pulse Model에 대한 통계적 추론

  • Kim, Nam Hee (Department of Statistics, Kyungpook National University) ;
  • Kim, Yongku (Department of Statistics, Kyungpook National University)
  • Received : 2016.05.23
  • Accepted : 2016.07.07
  • Published : 2016.08.31

Abstract

The Neyman-Scott Rectangular Pulse (NSRP) model is used to model the hourly rainfall series. This model uses a modest number of parameters to represent the rainfall processes and underlying physical phenomena such as the arrival of a storm or rain cells. In this paper, we proposed approximated likelihood function for the NSRP model and applied the proposed method to precipitation data in Seoul.

대표적인 강우생성 모형인 Neyman-Scott 구형펄스모형은 점과정(point process)을 이용하여 강우를 생성하는 모형으로 강우의 발생, 강우세포의 강우강도 그리고 지속시간의 분포로 표현된다. 특히 이 모형은 구형펄스모형(rectangular pulse model)에서 포함하지 않았던 강우사상의 군집특성을 반영하였다는 장점을 가지고 있다. NSRPM의 매개변수를 추정하는데 있어 moment를 이용한 여러가지 최적화 기법들이 연구되어 왔는데, 이러한 방법들은 목적함수를 추가하거나 조정하기 위해서는 복잡한 수식을 다시 계산하여야 하는 단점이 있으며, 전체적인 강우의 특성을 반영하기 어렵고 스케일에 따른 추정값의 변동도 크게 나타난다. 또한 moment를 이용한 추정값은 추정오차를 구할 수 없기 때문에 신뢰구간을 구할 수 없다는 단점이 있다. 이에 본 연구에서는 누적강수량에 대한 근사적인 우도함수(approximated likelihood function)를 소개하고 이를 통해 NSRPM의 매개변수를 추정하고자 한다. 또한 분석에 사용되는 누적강수량의 시간 스케일에 따른 추정치의 변동성도 함께 알아보고자 한다.

Keywords

References

  1. Bunday, B. D. and Garside, G. R. (1987). Optimisation Methods in Pascal, Edward Arnold Publishers, London.
  2. Calenda, G. and Napolitano, F. (1999). Parameter estimation of Neyman-Scott processes for temporal point rainfall simulation, Journal of Hydrology, 225, 45-66. https://doi.org/10.1016/S0022-1694(99)00133-X
  3. Cowperwait, P. S. P., O'Connell, P. E., Metcalfe, A. V., and Mawdsley, J. A. (1996). Stochastic point process modelling of rainfall. I. Single-site tting and validation, Journal of Hydrology, 175, 17-46.
  4. Entekhabi, D., Rodriguez-Iturbe, I., and Eagleson, P. S. (1989). Probabilistic representation of the temporal rainfall by a modied Neyman-Scott rectangular pulse model: parameter estimation and validation, Water Resources Research, 25, 295-302. https://doi.org/10.1029/WR025i002p00295
  5. Evin, G. and Favre, A. C. (2008). A new rainfall model based on the Neyman-Scott process using cubic copulas, Water Resources Research, 44, W03433.
  6. Goldberg, D. (1989). Generic Algorithms, Addison Wesley, Boston.
  7. Jung, C. S. (2009). Study of direct parameter estimation for Neyman-Scott rectangular pulse model, Journal of Korea Water Resources Association, 42, 1017-1028. https://doi.org/10.3741/JKWRA.2009.42.11.1017
  8. Kim, J. H., Lee, J. S., Lee, J. J., and Son, K. I. (1998). A modeling of daily precipitation series using the Poisson cluster process, Journal of the Korean Society of Civil Engineers, 18, 231-241.
  9. Kim, K. W. and Yoo, S. C. (2008). A selection of the point rainfall process model considered on temporal clustering characteristics, Journal of Korea Water Resources Association, 41, 747-759. https://doi.org/10.3741/JKWRA.2008.41.7.747
  10. Kim, S. and Kavvas, M. (2006). Stochastic point rainfall modeling for correlated rain cell intensity and duration, Journal of Hydrologic Engineering, 11, 29-36. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(29)
  11. Kim, Y. and Kim, D. H. (2016). An approximate liklihood function of spatial correlation parameters, Journal of the Korean Statistical Society, 45, 276-284. https://doi.org/10.1016/j.jkss.2015.11.003
  12. Kum, J. H., Ahn, J. H., Kim, J. H., and Yoon, Y. N. (2001). Parameter estimation of a point rainfall model, Neyman-Scott rectangular pulses mod. In Proceedings of Korea Water Resources Association 2001, 206-211.
  13. Neyman, J. and Scott, E. L. (1958). Statistical approach to problem of cosmology, Journal of the Royal Statistical, Society Series B, 20, 1-43.
  14. Rodriguez-Iturbe, I., Cox, D. R., and Isham, V. (1987). Some models for rainfall based stochastic point process. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 410, 269-288.
  15. Rodriguez-Iturbe, I., Cox, D. R., and Isham, V. (1988). A point process for rainfall: further development. In Proceedings of the Royal Society of London, 417, 283-298.
  16. Shin, J., Jung, C. S., and Heo, J. H. (2011). A study of new modied Neyman-Scott rectangular pulse model development using direct parameter estimation, Journal of Korea Water Resources Association, 44, 135-144. https://doi.org/10.3741/JKWRA.2011.44.2.135
  17. Velghe, T., Troch, P. A., De Troch, F. P., and Van de Velde, J. (1994). Evaluation of cluster-based rectangular pulse point process models for rainfall, Water Resource Research, 30, 2847-2857. https://doi.org/10.1029/94WR01496
  18. Yu, S. C., Kim, N. W., and Jeong, G. S. (2001). A point rainfal1 model and rainfall intensity-duration-frequency analysis, Journal of Korea Water Resources Association, 34, 577-586.

Cited by

  1. A spatial analysis of Neyman-Scott rectangular pulses model using an approximate likelihood function vol.27, pp.5, 2016, https://doi.org/10.7465/jkdi.2016.27.5.1119