References
- Bunday, B. D. and Garside, G. R. (1987). Optimisation Methods in Pascal, Edward Arnold Publishers, London.
- Calenda, G. and Napolitano, F. (1999). Parameter estimation of Neyman-Scott processes for temporal point rainfall simulation, Journal of Hydrology, 225, 45-66. https://doi.org/10.1016/S0022-1694(99)00133-X
- Cowperwait, P. S. P., O'Connell, P. E., Metcalfe, A. V., and Mawdsley, J. A. (1996). Stochastic point process modelling of rainfall. I. Single-site tting and validation, Journal of Hydrology, 175, 17-46.
- Entekhabi, D., Rodriguez-Iturbe, I., and Eagleson, P. S. (1989). Probabilistic representation of the temporal rainfall by a modied Neyman-Scott rectangular pulse model: parameter estimation and validation, Water Resources Research, 25, 295-302. https://doi.org/10.1029/WR025i002p00295
- Evin, G. and Favre, A. C. (2008). A new rainfall model based on the Neyman-Scott process using cubic copulas, Water Resources Research, 44, W03433.
- Goldberg, D. (1989). Generic Algorithms, Addison Wesley, Boston.
- Jung, C. S. (2009). Study of direct parameter estimation for Neyman-Scott rectangular pulse model, Journal of Korea Water Resources Association, 42, 1017-1028. https://doi.org/10.3741/JKWRA.2009.42.11.1017
- Kim, J. H., Lee, J. S., Lee, J. J., and Son, K. I. (1998). A modeling of daily precipitation series using the Poisson cluster process, Journal of the Korean Society of Civil Engineers, 18, 231-241.
- Kim, K. W. and Yoo, S. C. (2008). A selection of the point rainfall process model considered on temporal clustering characteristics, Journal of Korea Water Resources Association, 41, 747-759. https://doi.org/10.3741/JKWRA.2008.41.7.747
- Kim, S. and Kavvas, M. (2006). Stochastic point rainfall modeling for correlated rain cell intensity and duration, Journal of Hydrologic Engineering, 11, 29-36. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(29)
- Kim, Y. and Kim, D. H. (2016). An approximate liklihood function of spatial correlation parameters, Journal of the Korean Statistical Society, 45, 276-284. https://doi.org/10.1016/j.jkss.2015.11.003
- Kum, J. H., Ahn, J. H., Kim, J. H., and Yoon, Y. N. (2001). Parameter estimation of a point rainfall model, Neyman-Scott rectangular pulses mod. In Proceedings of Korea Water Resources Association 2001, 206-211.
- Neyman, J. and Scott, E. L. (1958). Statistical approach to problem of cosmology, Journal of the Royal Statistical, Society Series B, 20, 1-43.
- Rodriguez-Iturbe, I., Cox, D. R., and Isham, V. (1987). Some models for rainfall based stochastic point process. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 410, 269-288.
- Rodriguez-Iturbe, I., Cox, D. R., and Isham, V. (1988). A point process for rainfall: further development. In Proceedings of the Royal Society of London, 417, 283-298.
- Shin, J., Jung, C. S., and Heo, J. H. (2011). A study of new modied Neyman-Scott rectangular pulse model development using direct parameter estimation, Journal of Korea Water Resources Association, 44, 135-144. https://doi.org/10.3741/JKWRA.2011.44.2.135
- Velghe, T., Troch, P. A., De Troch, F. P., and Van de Velde, J. (1994). Evaluation of cluster-based rectangular pulse point process models for rainfall, Water Resource Research, 30, 2847-2857. https://doi.org/10.1029/94WR01496
- Yu, S. C., Kim, N. W., and Jeong, G. S. (2001). A point rainfal1 model and rainfall intensity-duration-frequency analysis, Journal of Korea Water Resources Association, 34, 577-586.
Cited by
- A spatial analysis of Neyman-Scott rectangular pulses model using an approximate likelihood function vol.27, pp.5, 2016, https://doi.org/10.7465/jkdi.2016.27.5.1119