• Title/Summary/Keyword: Approximated likelihood

Search Result 41, Processing Time 0.017 seconds

A Unit Root Test for Multivariate Autoregressive Model with Multiple Unit Roots

  • Shin, Key-Il
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.3
    • /
    • pp.397-405
    • /
    • 1997
  • Recently maximum likelihood estimators using unconditional likelihood function are used for testing unit roots. When one wants to use this method the determinant term of initial values in the multivariate unconditional likelihood function produces a complicated function of the elements in the coefficient matrix and variance matrix. In this paper an approximation of the determinant term is calculated and based on this aproximation an approximated unconditional likelihood function is calculated. The approximated unconditional maximum likelihood estimators can be used to test for unit roots. When multivariate process has one unit root the limiting distribution obtained by this method and the limiting distribution using exact unconditional likelihood function are the same.

  • PDF

A spatial analysis of Neyman-Scott rectangular pulses model using an approximate likelihood function (근사적 우도함수를 이용한 Neyman-Scott 구형펄스모형의 공간구조 분석)

  • Lee, Jeongjin;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1119-1131
    • /
    • 2016
  • The Neyman-Scott Rectangular Pulses Model (NSRPM) is mainly used to construct hourly rainfall series. This model uses a modest number of parameters to represent the rainfall processes and underlying physical phenomena, such as the arrival of storms or rain cells. In NSRPM, the method of moments has often been used because it is difficult to know the distribution of rainfall intensity. Recently, approximated likelihood function for NSRPM has been introduced. In this paper, we propose a hierarchical model for applying a spatial structure to the NSRPM parameters using the approximated likelihood function. The proposed method is applied to summer hourly precipitation data observed at 59 weather stations (Korea Meteorological Administration) from 1973 to 2011.

A statistical inference for Neyman-Scott Rectangular Pulse model (Neyman-Scott Rectangular Pulse Model에 대한 통계적 추론)

  • Kim, Nam Hee;Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.887-896
    • /
    • 2016
  • The Neyman-Scott Rectangular Pulse (NSRP) model is used to model the hourly rainfall series. This model uses a modest number of parameters to represent the rainfall processes and underlying physical phenomena such as the arrival of a storm or rain cells. In this paper, we proposed approximated likelihood function for the NSRP model and applied the proposed method to precipitation data in Seoul.

Sequential Estimation in Exponential Distribution

  • Park, Sang-Un
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.309-316
    • /
    • 2007
  • In this paper, we decompose the whole likelihood based on grouped data into conditional likelihoods and study the approximate contribution of additional inspection to the efficiency. We also combine the conditional maximum likelihood estimators to construct an approximate maximum likelihood estimator. For an exponential distribution, we see that a large inspection size does not increase the efficiency much if the failure rate is small, and the maximum likelihood estimator can be approximated with a linear function of inspection times.

System Reliability Estimation in Bivariate Pareto Model Affected by Common Stress : Bivariate Random Censored Data Case

  • Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.791-799
    • /
    • 2005
  • We consider two components parallel system in which the lifetimes have the bivariate Pareto model with bivariate random censored data. We assume that bivariate Pareto model is affected by common stress which is independent of the lifetimes of the components. We obtain estimators for the system reliability based on likelihood function and relative frequency. Also we construct approximated confidence intervals for the reliability based on maximum likelihood estimator and relative frequency estimator, respectively. Finally we present a numerical study.

  • PDF

Approximated Soft-Decision Demapping Algorithm for Coded 4+12+16 APSK (부호화된 4+12+16 APSK를 위한 근사화된 연판정 디매핑 알고리즘)

  • Lee, Jaeyoon;Jang, Yeonsoo;Yoon, Dongweon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.9
    • /
    • pp.738-745
    • /
    • 2012
  • This paper proposes an approximated soft decision demapping algorithm with low computational complexity for coded 4+12+16 amplitude phase shift keying (APSK) in an additive white Gaussian noise (AWGN) channel. To derive the proposed algorithm, we approximate the decision boundaries for 4+12+16 APSK symbols, and then decide the log likelihood ratio (LLR) value for each bit from the approximated decision boundaries. Although the proposed algorithm shows about 0.6~1.1dB degradation on the error performance compared with the conventional max-log algorithm, it gives a significant result in terms of the computational complexity.

On the maximum likelihood estimation for a normal distribution under random censoring

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.6
    • /
    • pp.647-658
    • /
    • 2018
  • In this paper, we study statistical inferences on the maximum likelihood estimation of a normal distribution when data are randomly censored. Likelihood equations are derived assuming that the censoring distribution does not involve any parameters of interest. The maximum likelihood estimators (MLEs) of the censored normal distribution do not have an explicit form, and it should be solved in an iterative way. We consider a simple method to derive an explicit form of the approximate MLEs with no iterations by expanding the nonlinear parts of the likelihood equations in Taylor series around some suitable points. The points are closely related to Kaplan-Meier estimators. By using the same method, the observed Fisher information is also approximated to obtain asymptotic variances of the estimators. An illustrative example is presented, and a simulation study is conducted to compare the performances of the estimators. In addition to their explicit form, the approximate MLEs are as efficient as the MLEs in terms of variances.

Reliability Estimation in Bivariate Pareto Model with Bivariate Type I Censored Data

  • Cho, Jang-Sik;Cho, Kil-Ho;Kang, Sang-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.837-844
    • /
    • 2003
  • In this paper, we obtain the estimator of system reliability for the bivariate Pareto model with bivariate type 1 censored data. We obtain the estimators and approximated confidence intervals of the reliability for the parallel system based on likelihood function and the relative frequency, respectively. Also we present a numerical example by giving a data set which is generated by computer.

  • PDF

Estimation for ordered means in normal distributions

  • Cho, Kil-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.951-958
    • /
    • 2010
  • In this paper, we obtain the restricted maximum likelihood estimators (RMLE's) for means in normal distributions with the ordered mean constraints. The biases and mean squared errors (MSE's) of these RMLE's are approximated by Mote Carlo methods. In every case a substantial savings in MSE is obtained at the expense of a small loss in bias when using RMLE's instead of the unrestricted MLE's.

Reliability for Series System in Bivariate Weibull Model under Bivariate Random Censorship

  • Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.219-226
    • /
    • 2004
  • In this paper, we consider two-components system which the lifetimes have a bivariate Weibull distribution with bivariate random censored data. Here the bivariate censoring times are independent of the lifetimes of the components. We obtain estimators and approximated confidence intervals for the reliability of series system based on likelihood function and relative frequency, respectively. Also we present a numerical study.

  • PDF