• 제목/요약/키워드: Approximate Equation

검색결과 491건 처리시간 0.024초

CONVERGENCE OF APPROXIMATE SOLUTIONS TO SCALAR CONSERVATION LAWS BY DEGENERATE DIFFUSION

  • Hwang, Seok
    • 대한수학회논문집
    • /
    • 제22권1호
    • /
    • pp.145-155
    • /
    • 2007
  • In this paper, we show the convergence of approximate solutions to the convective porous media equation using methodology developed in [8]. First, we obtain the approximate transport equation for the given convective porous media equation. Then using the averaging lemma, we obtain the convergence.

A NOTE ON THE APPROXIMATE SOLUTIONS TO STOCHASTIC DIFFERENTIAL DELAY EQUATION

  • KIM, YOUNG-HO;PARK, CHAN-HO;BAE, MUN-JIN
    • Journal of applied mathematics & informatics
    • /
    • 제34권5_6호
    • /
    • pp.421-434
    • /
    • 2016
  • The main aim of this paper is to discuss the difference between the Euler-Maruyama's approximate solutions and the accurate solution to stochastic differential delay equation. To make the theory more understandable, we impose the non-uniform Lipschitz condition and weakened linear growth condition. Furthermore, we give the pth moment continuous of the approximate solution for the delay equation.

AN APPROXIMATE ANALYTICAL SOLUTION OF A NONLINEAR HYDRO-THERMO COUPLED DIFFUSION EQUATION

  • Lee, Jeong-woo;Cho, Won-cheol
    • Water Engineering Research
    • /
    • 제2권3호
    • /
    • pp.187-196
    • /
    • 2001
  • An approximate analytical solution of a nonlinear hydro-thermo coupled diffusion equation is derived using the dimensionless form of the equation and transformation method. To derive an analytical solution, it is drastically assumed that the product of first order derivatives in the non-dimensionalized governing equation has little influence on the solution of heat and moisture behavior problem. The validity of this drastic assumption is demonstrated. Some numerical simulation is performed to investigate the applicability of a derived approximate analytical solution. The results show a good agreement between analytical and numerical solutions. The proposed solution may provide a useful tool in the verification process of the numerical models. Also, the solution can be used for the analysis of one-dimensional coupled heat and moisture movements in unsaturated porous media.

  • PDF

AN APPROXIMATE SOLUTION OF AN INTEGRAL EQUATION BY WAVELETS

  • SHIM HONG TAE;PARK CHIN HONG
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.709-717
    • /
    • 2005
  • Integral equations occur naturally in many fields of mechanics and mathematical physics. We consider the Fredholm integral equation of the first kind.In this paper we are interested in integral equation of convolution type. We give approximate solution by Meyer wavelets

COSINE FUNCTIONAL EQUATION IN SEVERAL VARIABLES

  • CHUNG, JAEYOUNG;KO, SEUNGJUN;SONG, SUNGHYUN
    • 호남수학학술지
    • /
    • 제27권1호
    • /
    • pp.43-49
    • /
    • 2005
  • Making use of a transparent way of convolution by tensor product of approximate identities we consider the cosine functional equation in several variables.

  • PDF

APPROXIMATE PEXIDERIZED EXPONENTIAL TYPE FUNCTIONS

  • Lee, Young-Whan
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제19권2호
    • /
    • pp.193-198
    • /
    • 2012
  • We show that every unbounded approximate Pexiderized exponential type function has the exponential type. That is, we obtain the superstability of the Pexiderized exponential type functional equation $$f(x+y)=e(x,y)g(x)h(y)$$. From this result, we have the superstability of the exponential functional equation $$f(x+y)=f(x)f(y)$$.

EFFICIENT NUMERICAL METHODS FOR THE KDV EQUATION

  • Kim, Mi-Young;Choi, Young-Kwang
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제15권4호
    • /
    • pp.291-306
    • /
    • 2011
  • We consider the second order Strang splitting method to approximate the solution to the KdV equation. The model equation is split into three sets of initial value problems containing convection and dispersal terms separately. TVD MUSCL or MUSCL scheme is applied to approximate the convection term and the second order centered difference method to approximate the dispersal term. In time stepping, explicit third order Runge-Kutta method is used to the equation containing convection term and implicit Crank-Nicolson method to the equation containing dispersal term to reduce the CFL restriction. Several numerical examples of weakly and strongly dispersive problems, which produce solitons or dispersive shock waves, or may show instabilities of the solution, are presented.

APPROXIMATIONS OF SOLUTIONS FOR A NONLOCAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH DEVIATED ARGUMENT

  • CHADHA, ALKA;PANDEY, DWIJENDRA N.
    • Journal of applied mathematics & informatics
    • /
    • 제33권5_6호
    • /
    • pp.699-721
    • /
    • 2015
  • This paper investigates the existence of mild solution for a fractional integro-differential equations with a deviating argument and nonlocal initial condition in an arbitrary separable Hilbert space H via technique of approximations. We obtain an associated integral equation and then consider a sequence of approximate integral equations obtained by the projection of considered associated nonlocal fractional integral equation onto finite dimensional space. The existence and uniqueness of solutions to each approximate integral equation is obtained by virtue of the analytic semigroup theory via Banach fixed point theorem. Next we demonstrate the convergence of the solutions of the approximate integral equations to the solution of the associated integral equation. We consider the Faedo-Galerkin approximation of the solution and demonstrate some convergenceresults. An example is also given to illustrate the abstract theory.

선형 근사 헨스톡 적분방정식에 대하여 (Linear Approximate Henstock Integral Equations)

  • 임동일;임복영
    • 한국수학사학회지
    • /
    • 제18권3호
    • /
    • pp.107-117
    • /
    • 2005
  • 본 논문에서는 선형 헨스톡 적분방정식과 조금 다른 선형 근사 헨스톡 적분방정식을 소개하고, 어떤 적분방정식이 헨스톡 적분의미에서는 해를 갖지 않지만 근사 헨스톡 적분의미에서는 해를 갖는 예를 보이고 더욱 더 우리는 선형 근사 헨스톡 적분방정식의 해의 존재성과 유일성에 대하여 연구하였다.

  • PDF

Analytical approximate solutions for large post-buckling response of a hygrothermal beam

  • Yu, Yongping;Sun, Youhong
    • Structural Engineering and Mechanics
    • /
    • 제43권2호
    • /
    • pp.211-223
    • /
    • 2012
  • This paper deals with large deformation post-buckling of a linear-elastic and hygrothermal beam with axially nonmovable pinned-pinned ends and subjected to a significant increase in swelling by an alternative method. Analytical approximate solutions for the geometrically nonlinear problem are presented. The solution for the limiting case of a string is also obtained. By coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials, the governing differential equation with sinusoidal nonlinearity can be reduced to form a cubic-nonlinear equation, and supplementary condition with cosinoidal nonlinearity can also be simplified to be a polynomial integral equation. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. Two approximate formulae for load along axis, potential strain for free hygrothermal expansion and periodic solution are established for small as well as large angle of rotation at the end of the beam. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.