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APPROXIMATE PEXIDERIZED EXPONENTIAL TYPE
FUNCTIONS

Young Whan Lee

Abstract. We show that every unbounded approximate Pexiderized exponential
type function has the exponential type. That is, we obtain the superstability of the
Pexiderized exponential type functional equation

f(x + y) = e(x, y)g(x)h(y).

From this result, we have the superstability of the exponential functional equation

f(x + y) = f(x)f(y).

1. Introduction

In 1940, S.M. Ulam gave a wide ranging talk in the Mathematical Club of the
University of Wisconsin in which he discussed a number of important unsolved
problems (ref. [17]). Among those there was the question concerning the stability
of homomorphisms : Let G1 be a group and let G2 be a metric group with a metric
d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a mapping h : G1 → G2

satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there exists a
homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1? In the next
year, D.H. Hyers [5] answered the question of Ulam for the case where G1 and G2

are Banach spaces. Futhermore, the result of Hyers has been generalized by Th.M.
Rassias [15]. Since then, the stability problems of various functional equations has
been investigated by many authors (see [3-16]).

The superstability of the functional equation f(x+y) = f(x)f(y) was studied by
J. Baker, J. Lawrence and F. Zorzitto [2]. They proved that if f is a functional on
a real vector space W satisfying |f(x + y)− f(x)f(y)| ≤ δ for some fixed δ > 0 and
all x, y ∈ W , then either f is bounded or else f(x + y) = f(x)f(y) for all x, y ∈ W .
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This result was genealized with a simplified proof by J. Baker [1] as following : Let
δ > 0, S be a semigroup and f : S → C satisfy |f(x + y) − f(x)f(y)| ≤ δ for all
x, y ∈ S. Put β := (1 +

√
1 + 4δ)/2. Then either f(x) ≤ β for all x ∈ S or else

f(x + y) = f(x)f(y) for all x, y ∈ S.
The author [14] proved the superstability of the Pexiderized multiplicative func-

tional equation
f(x + y) = g(x)h(x)

and G.H. Kim and the author [10] also obtained the superstability of the gamma-
beta type functional equation

β(x, y)f(x + y) = f(x)f(y)

where β(x, y) is of beta type function.
In this paper, we consider the Pexiderized exponential type functional equation

(1.1) f(x + y) = e(x, y)g(x)h(y).

And then we prove the superstability of (1.1). Theorem 1 with φ(x) = δ states that
every unbounded approximate Pexiderized exponential type function is an exponen-
tial type function.

2. Definitions and Solutions

Definition 1. A function e : [0,∞) × [0,∞) → [1,∞) is pseudo exponential if
e(x, y) satisfies as follows;

(a) e(x, y) = e(y, x), for all x, y ∈ [0,∞),
(b) e(x,y)e(z,x+y)

e(x,y+z)e(y,z) = 1, for all x, y ∈ [0,∞),
(c) e(x, n) →∞, as n →∞ for n ∈ N+ and fixed x ∈ [0,∞),
(d) e(0, x) = 1, for all x ∈ [0,∞).

Definition 2. A function f : [0,∞) → R is of an approximate exponential type if
there is a δ > 0 and a pseudo exponential function e : [0,∞)× [0,∞) → [1,∞) such
that

| f(x + y)− e(x, y)f(x)f(y) | ≤ δ

for all (x, y) ∈ [0,∞) × [0,∞). In the case of δ = 0, we call f an exponential type
function.

Definition 3. A function f : [0,∞) → R is of an approximate Pexiderized exponen-
tial type if there is a δ > 0, a pseudo exponential function e : [0,∞)×[0,∞) → [1,∞)
and some functions g, h : [0,∞) → R such that
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| f(x + y)− e(x, y)g(x)h(y) | ≤ δ

for all (x, y) ∈ [0,∞) × [0,∞). In the case of δ = 0, we call f a Pexiderized
exponential type function.

Examples and Solutions. If f, g, h : R → R are functions satisfying the equation
(1.1) and e(x, y) = axy (a > 1) then e is a pseudo exponential function and f(x) =

a
x2

2
+3, g(x) = a

x2

2
+2, h(x) = a

x2

2
+1 are solutions of it.

Now we consider the gamma-beta functional equation. If f, g, h : (0,∞) → R

are functions satisfying the equation (1.1) and β(x, y) is the beta function then β−1

satisfies the conditions (a) ∼ (c) except (d) (see, Corollary 4 in [12]) and f(x) =
6ax+1Γ(x), g(x) = 3axΓ(x), h(x) = 2ax+1Γ(x) are solutions of the equation (1.1).

3. Superstability of an Exponential Type Functional Equation

Theorem 1. Let a function φ : [0,∞) → [0,∞) be given and e : [0,∞)× [0,∞) →
[1,∞) be a pseudo exponential function. Assume that f, g, h : [0,∞) → R are
nonzero functions with |g(m)| ≥ max(2, φ(m)+φ(0)

|h(m)| ) for some positive integer m and
g(0) = 1 such that

(3.1) | f(x + y)− e(x, y)g(x)h(y) | ≤ min{φ(x), φ(y)}

for all (x, y) ∈ [0,∞)× [0,∞). Then

g(x + y) = e(x, y)g(x)g(y)

for all (x, y) ∈ [0,∞)× [0,∞).

Proof. If we replace x by m and also y by m in (3.1), respectively, we get

| f(2m)− e(m,m)g(m)h(m) | ≤ φ(m).

Also if we replace x by 0 in (3.1) then we have

|f(y)− h(y)| ≤ min{φ(0), φ(y)} ≤ φ(0)

for all y ∈ [0,∞). An induction argument implies that for all n ≥ 2

(3.2)

| f(nm)−
n−1∏

i=1

e(im,m)g(m)n−1h(m) |

≤ (φ(m) + φ(0))

(
1 +

n−2∑

i=1

(
|g(m)|i

i∏

k=1

e(m, (n− k)n)

))
.
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Indeed, if the inequality (3.2) holds, we have

| f((n + 1)m)−
n∏

i=1

e(m, im)g(m)nh(m) |

≤ | |f((n + 1)m)− e(m,nm)g(m)h(nm) |
+ |g(m)|e(m,nm) | (h(nm)− f(nm) |

+ |g(m)|e(m,nm)

∣∣∣∣∣f(nm)−
n−1∏

i=1

e(im,m)g(m)n−1h(m)

∣∣∣∣∣
≤ φ(m) + φ(0)|g(m)|e(m,nm)

+ |g(m)|e(m,nm)(φ(m) + φ(0))

·
(

1 +
n−2∑

i=1

(
|g(m)|i

i∏

k=1

e(m, (n− k)n)

))

≤ (φ(m) + φ(0))

(
1 +

n−1∑

i=1

(
|g(m)|i

i∏

k=1

e(m, (n− k + 1)n)

))

for all n ≥ 2. By (3.2) we get

∣∣∣∣∣∣
f(nm)(∏n−1

i=1 e(m, im)
)

g(m)n−1h(m)
− 1

∣∣∣∣∣∣

≤
(

1
|g(m)|n−1

+
1

|g(m)|n−2
+ · · ·+ 1

|g(m)|1
)
· φ(m) + φ(0)

|h(m)|
<

φ(m) + φ(0)
|h(m)||g(m)

(
1 +

1
2

+
1
22

+ · · ·
)

= 2
φ(m) + φ(0)
|g(m)||h(m)| ≤

1
2

for all positive integer n. Thus we can easily show that

(3.3) |f(nm)| → ∞ as n →∞ and |h(nm)| → ∞ as n →∞.

Since e(x,y)e(z,x+y)
e(x,y+z)e(y,z) = 1 and e(x,y+nm)

e(nm,x+y) = e(x,y)
e(y,nm) ,

(3.4)

|h(nm)| | g(x + y)− e(x, y)g(x)g(y) |
≤| e(nm, x + y)h(nm)g(x + y)− f(nm + x + y) | 1

e(nm, x + y)

+
1

e(nm, x + y)
| f(x + y + nm)− e(x, y + nm)g(x)h(y + nm) |
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+ | h(y + nm)− f(y + nm) || g(x) | ·e(x, y + nm)
e(nm, x + y)

+ | f(y + nm)− e(y, nm)g(y)h(nm) | |g(x)| · e(x, y + nm)
e(nm, x + y)

≤ φ(m) + φ(0)
e(nm, x + y)

+ (φ(0) + φ(y))|g(x)| · e(x, y)
e(y, nm)

< ∞

for all sufficiently large n and (x, y) ∈ [0,∞)× [0,∞). It follows from (3.3) and (3.4)
by dividing |h(nm)| that

g(x, y) = e(x, y)g(x)g(y)

for all (x, y) ∈ [0,∞)× [0,∞). ¤

Corollary 1. Let δ > 0 and a > 1 be given. Suppose that f : [0,∞) → R be
a nonzero function with |f(m)| ≥ max(2,

√
2δ) for some positive integer m and

g(0) = 1 such that

| f(x + y)− axyg(x)h(y) | ≤ δ

for all x, y ∈ R. Then

g(x + y) = axyg(x)g(y)

for all x, y ∈ R.

Proof. Let e(x, y) = axy for all x, y ∈ [0,∞). Then e(x, y) is a pseudo exponential
function. Also let φ(x) = δ then φ(m) + φ(0) = 2δ for any m ∈ N . By Theorem 1,
we complete the proof. ¤

Corollary 2. Let δ > 0 be given. Suppose that f : [0,∞) → R be a function with
|f(m)| ≥ max(2,

√
2δ) for some positive integer m and f(0) = 1 such that

| f(x + y)− f(x)f(y) | ≤ δ

for all x, y ∈ R. Then

f(x + y) = f(x)f(y)

for all x, y ∈ R.
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