• Title/Summary/Keyword: Applications of SoC

Search Result 426, Processing Time 0.026 seconds

80μW/MHz 0.68V Ultra Low-Power Variation-Tolerant Superscalar Dual-Core Application Processor

  • Kwon, Youngsu;Lee, Jae-Jin;Shin, Kyoung-Seon;Han, Jin-Ho;Byun, Kyung-Jin;Eum, Nak-Woong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.71-77
    • /
    • 2015
  • Upcoming ground-breaking applications for always-on tiny interconnected devices steadily demand two-fold features of processor cores: aggressively low power consumption and enhanced performance. We propose implementation of a novel superscalar low-power processor core with a low supply voltage. The core implements intra-core low-power microarchitecture with minimal performance degradation in instruction fetch, branch prediction, scheduling, and execution units. The inter-core lockstep not only detects malfunctions during low-voltage operation but also carries out software-based recovery. The chip incorporates a pair of cores, high-speed memory, and peripheral interfaces to be implemented with a 65nm node. The processor core consumes only 24mW at 350MHz and 0.68V, resulting in power efficiency of $80{\mu}W/MHz$. The operating frequency of the core reaches 850MHz at 1.2V.

An impulse radio (IR) radar SoC for through-the-wall human-detection applications

  • Park, Piljae;Kim, Sungdo;Koo, Bontae
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.480-490
    • /
    • 2020
  • More than 42 000 fires occur nationwide and cause over 2500 casualties every year. There is a lack of specialized equipment, and rescue operations are conducted with a minimal number of apparatuses. Through-the-wall radars (TTWRs) can improve the rescue efficiency, particularly under limited visibility due to smoke, walls, and collapsed debris. To overcome detection challenges and maintain a small-form factor, a TTWR system-on-chip (SoC) and its architecture have been proposed. Additive reception based on coherent clocks and reconfigurability can fulfill the TTWR demands. A clock-based single-chip infrared radar transceiver with embedded control logic is implemented using a 130-nm complementary metal oxide semiconductor. Clock signals drive the radar operation. Signal-to-noise ratio enhancements are achieved using the repetitive coherent clock schemes. The hand-held prototype radar that uses the TTWR SoC operates in real time, allowing seamless data capture, processing, and display of the target information. The prototype is tested under various pseudo-disaster conditions. The test standards and methods, developed along with the system, are also presented.

FPGA Design and SoC Implementation of Constant-Amplitude Multicode Bi-Orthogonal Modulation (정진폭 다중 부호 이진 직교 변복조기의 FPGA 설계 및 SoC 구현)

  • Hong, Dae-Ki;Kim, Yong-Seong;Kim, Sun-Hee;Cho, Jin-Woong;Kang, Sung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11C
    • /
    • pp.1102-1110
    • /
    • 2007
  • In this paper, we design the FPGA (Field-Programmable Gate Array) of the CAMB (Constant-Amplitude Multi-code Biorthogonal) modulation, and implement the SoC (System on Chip). The ASIC (Application Specific Integrated Circuit) chip is be implemented through targeting and board test. This 12Mbps modem SoC includes the ARM (Advanced RISC Machine)7TDMI, 64Kbyte SRAM(Static Random Access Memory) and ADC (Analog to Digital Converter)/DAC (Digital to Analog Converter) for flexible applications. Additionally, the modem SoC can support the variable communication interfaces such as the 16-bits PCMCIA (Personal Computer Memory Card International Association), USB (Universal Serial Bus) 1.1, and 16C550 Compatible UART (Universal Asynchronous Receiver/Transmitter).

Efficient hardware implementation and analysis of true random-number generator based on beta source

  • Park, Seongmo;Choi, Byoung Gun;Kang, Taewook;Park, Kyunghwan;Kwon, Youngsu;Kim, Jongbum
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.518-526
    • /
    • 2020
  • This paper presents an efficient hardware random-number generator based on a beta source. The proposed generator counts the values of "0" and "1" and provides a method to distinguish between pseudo-random and true random numbers by comparing them using simple cumulative operations. The random-number generator produces labeled data indicating whether the count value is a pseudo- or true random number according to its bit value based on the generated labeling data. The proposed method is verified using a system based on Verilog RTL coding and LabVIEW for hardware implementation. The generated random numbers were tested according to the NIST SP 800-22 and SP 800-90B standards, and they satisfied the test items specified in the standard. Furthermore, the hardware is efficient and can be used for security, artificial intelligence, and Internet of Things applications in real time.

An Efficient Secrete Key Protection Technique of Scan-designed AES Core (스캔 설계된 AES 코아의 효과적인 비밀 키 보호 기술)

  • Song, Jae-Hoon;Jung, Tae-Jin;Jeong, Hye-Ran;Kim, Hwa-Young;Park, Sung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.77-86
    • /
    • 2010
  • This paper presents an efficient secure scan design technique which is based on a fake key and IEEE 1149.1 instruction to protect secret key from scan-based side channel attack for an Advanced Encryption Standard (AES) core embedded on an System-on-a-Chip (SoC). Our proposed secure scan design technique can be applied to crypto IP core which is optimized for applications without the IP core modification. The IEEE 1149.1 standard is kept, and low area, low power consumption, very robust secret-key protection and high fault coverage can be achieved compared to the existing methods.

ViP: A Practical Approach to Platform-based System Modeling Methodology

  • Um, Jun-Hyung;Hong, Sung-Pack;Kim, Young-Taek;Chung, Eui-Young;Choi, Kyu-Myung;Kong, Jeong-Taek;Eo, Soo-Kwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.89-101
    • /
    • 2005
  • Research on highly abstracted system modeling and simulation has received a great deal of attention as of the concept of platform based design is becoming ubiquitous. From a practical design point of view, such modeling and simulation must consider the following: (i) fast simulation speed and cycle accuracy, (ii) early availability for early stage software development, (iii) inter-operability with external tools for software development, and (iv) reusability of the models. Unfortunately, however, all of the previous works only partially addresses the requirements, due to the inherent conflicts among the requirements. The objective of this study is to develop a new system design methodology to effectively address the requirements mentioned above. We propose a new transaction-level system modeling methodology, called ViP (Virtual Platform). We propose a two-step approach in the ViP method. In phase 1, we create a ViP for early stage software development (before RTL freeze). The ViP created in this step provides high speed simulation, lower cycle accuracy with only minor modeling effort.(satisfying (ii)). In phase 2, we refine the ViP to increase the cycle accuracy for system performance analysis and software optimization (satisfying (i)). We also propose a systematic ViP modeling flow and unified interface scheme based on utilities developed for maximizing reusability and productivity (satisfying (ii) and (iv)) and finally, we demonstrate VChannel, a generic scheme to provide a connection between the ViP and the host-resident application software (satisfying (iii)). ViP had been applied to several System-on-a-chip (SoC) designs including mobile applications, enabling engineers to improve performance while reducing the software development time by 30% compared to traditional methods.

FGPA Design and SoC Implementation for Wireless PAN Applications (무선 PAN 응용을 위한 FPGA 설계 및 SoC)

  • Kim, Young-Sung;Kim, Sun-Hee;Hong, Dae-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.462-469
    • /
    • 2008
  • In this paper, we design the FPGA (Field-Programmable Gate Array) of the KOINONIA WPAN (Wireless Personal Area Network), and implement the SoC (System on Chip). We use the redundant bits to make a constant-amplitude in a modulator part. Additionally, the SNR (Signal to Noise Ratio) performance of the demodulator is improved by using the redundant bits in decoding steps. The four-million FPGA of the KOINONIA WPAN can be operated at 44MHz frequency. The PER (Packet Error Rate) of the designed FPGA with RF (Radio Frequency) module is below 1% at the -86dB MIPLS (Minimum Input Power Level Sensitivity), and the SNR is about 13dB. The SoC is implemented by using Hynix 0.25um CMOS (Complementary Metal Oxide Semiconductor) process. The size of the SoC is $6.52mm{\times}6.92mm$.

A Platform-Based SoC Design for Real-Time Stereo Vision

  • Yi, Jong-Su;Park, Jae-Hwa;Kim, Jun-Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.212-218
    • /
    • 2012
  • A stereo vision is able to build three-dimensional maps of its environment. It can provide much more complete information than a 2D image based vision but has to process, at least, that much more data. In the past decade, real-time stereo has become a reality. Some solutions are based on reconfigurable hardware and others rely on specialized hardware. However, they are designed for their own specific applications and are difficult to extend their functionalities. This paper describes a vision system based on a System on a Chip (SoC) platform. A real-time stereo image correlator is implemented using Sum of Absolute Difference (SAD) algorithm and is integrated into the vision system using AMBA bus protocol. Since the system is designed on a pre-verified platform it can be easily extended in its functionality increasing design productivity. Simulation results show that the vision system is suitable for various real-time applications.

Parallel Multiple Hashing for Packet Classification

  • Jung, Yeo-Jin;Kim, Hye-Ran;Lim, Hye-Sook
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.171-174
    • /
    • 2004
  • Packet classification is an essential architectural component in implementing the quality-of-service (QoS) in today's Internet which provides a best-effort service to ail of its applications. Multiple header fields of incoming packets are compared against a set of rules in packet classification, the highest priority rule among matched rules is selected, and the packet is treated according to the action of the rule. In this Paper, we proposed a new packet classification scheme based on parallel multiple hashing on tuple spaces. Simulation results using real classifiers show that the proposed scheme provides very good performance on the required number of memory accesses and the memory size compared with previous works.

  • PDF

A 50-mA 1-nF Low-Voltage Low-Dropout Voltage Regulator for SoC Applications

  • Giustolisi, Gianluca;Palumbo, Gaetano;Spitale, Ester
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.520-529
    • /
    • 2010
  • In this paper, we present a low-voltage low-dropout voltage regulator (LDO) for a system-on-chip (SoC) application which, exploiting the multiplication of the Miller effect through the use of a current amplifier, is frequency compensated up to 1-nF capacitive load. The topology and the strategy adopted to design the LDO and the related compensation frequency network are described in detail. The LDO works with a supply voltage as low as 1.2 V and provides a maximum load current of 50 mA with a drop-out voltage of 200 mV: the total integrated compensation capacitance is about 40 pF. Measurement results as well as comparison with other SoC LDOs demonstrate the advantage of the proposed topology.