• 제목/요약/키워드: Appell function $F_3$

검색결과 16건 처리시간 0.02초

FUNCTIONAL RELATIONS INVOLVING SRIVASTAVA'S HYPERGEOMETRIC FUNCTIONS HB AND F(3)

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • 충청수학회지
    • /
    • 제24권2호
    • /
    • pp.187-204
    • /
    • 2011
  • B. C. Carlson [Some extensions of Lardner's relations between $_0F_3$ and Bessel functions, SIAM J. Math. Anal. 1(2) (1970), 232-242] presented several useful relations between Bessel and generalized hypergeometric functions that generalize some earlier results. Here, by simply splitting Srivastava's hypergeometric function $H_B$ into eight parts, we show how some useful and generalized relations between Srivastava's hypergeometric functions $H_B$ and $F^{(3)}$ can be obtained. These main results are shown to be specialized to yield certain relations between functions $_0F_1$, $_1F_1$, $_0F_3$, ${\Psi}_2$, and their products including different combinations with different values of parameters and signs of variables. We also consider some other interesting relations between the Humbert ${\Psi}_2$ function and $Kamp\acute{e}$ de $F\acute{e}riet$ function, and between the product of exponential and Bessel functions with $Kamp\acute{e}$ de $F\acute{e}riet$ functions.

DECOMPOSITION FORMULAS AND INTEGRAL REPRESENTATIONS FOR SOME EXTON HYPERGEOMETRIC FUNCTIONS

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • 충청수학회지
    • /
    • 제24권4호
    • /
    • pp.745-758
    • /
    • 2011
  • Generalizing the Burchnall-Chaundy operator method, the authors are aiming at presenting certain decomposition formulas for the chosen six Exton functions expressed in terms of Appell's functions $F_3$ and $F_4$, Horn's functions $H_3$ and $H_4$, and Gauss's hypergeometric function F. We also give some integral representations for the Exton functions $X_i$ (i = 6, 8, 14) each of whose kernels contains the Horn's function $H_4$.

GENERALIZED FRACTIONAL DIFFERINTEGRAL OPERATORS OF THE K-SERIES

  • Gupta, Rajeev Kumar;Shaktawat, Bhupender Singh;Kumar, Dinesh
    • 호남수학학술지
    • /
    • 제39권1호
    • /
    • pp.61-71
    • /
    • 2017
  • In the present paper, we further study the generalized fractional differintegral (integral and differential) operators involving Appell's function $F_3$ introduced by Saigo-Maeda [9], and are applied to the K-Series defined by Gehlot and Ram [3]. On account of the general nature of our main results, a large number of results obtained earlier by several authors such as Ram et al. [7], Saxena et al. [14], Saxena and Saigo [15] and many more follow as special cases.

Serendipitous Functional Relations Deducible from Certain Generalized Triple Hypergeometric Functions

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Kyungpook Mathematical Journal
    • /
    • 제52권2호
    • /
    • pp.109-136
    • /
    • 2012
  • We aim at presenting certain unexpected functional relations among various hypergeometric functions of one or several variables (for example, see the identities in Corollary 5) by making use of Carlson's method employed in his work (Some extensions of Lardner's relations between $_0F_3$ and Bessel functions, SIAM J. Math. Anal. 1(2)(1970), 232-242).

SUMMATION FORMULAS DERIVED FROM THE SRIVASTAVA'S TRIPLE HYPERGEOMETRIC SERIES HC

  • Kim, Yong-Sup;Rathie, Arjun Kumar;Choi, June-Sang
    • 대한수학회논문집
    • /
    • 제25권2호
    • /
    • pp.185-191
    • /
    • 2010
  • Srivastava noticed the existence of three additional complete triple hypergeometric functions $H_A$, $H_B$ and $H_C$ of the second order in the course of an extensive investigation of Lauricella's fourteen hypergeometric functions of three variables. In 2004, Rathie and Kim obtained four summation formulas containing a large number of very interesting reducible cases of Srivastava's triple hypergeometric series $H_A$ and $H_C$. Here we are also aiming at presenting two unified summation formulas (actually, including 62 ones) for some reducible cases of Srivastava's $H_C$ with the help of generalized Dixon's theorem and generalized Whipple's theorem on the sum of a $_3F_2$ obtained earlier by Lavoie et al.. Some special cases of our results are also considered.

FRACTIONAL CALCULUS OPERATORS AND THEIR IMAGE FORMULAS

  • Agarwal, Praveen;Choi, Junesang
    • 대한수학회지
    • /
    • 제53권5호
    • /
    • pp.1183-1210
    • /
    • 2016
  • During the past four decades or so, due mainly to a wide range of applications from natural sciences to social sciences, the so-called fractional calculus has attracted an enormous attention of a large number of researchers. Many fractional calculus operators, especially, involving various special functions, have been extensively investigated and widely applied. Here, in this paper, in a systematic manner, we aim to establish certain image formulas of various fractional integral operators involving diverse types of generalized hypergeometric functions, which are mainly expressed in terms of Hadamard product. Some interesting special cases of our main results are also considered and relevant connections of some results presented here with those earlier ones are also pointed out.