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FRACTIONAL CALCULUS OPERATORS AND THEIR
IMAGE FORMULAS

PRAVEEN AGARWAL AND JUNESANG CHOI

ABSTRACT. During the past four decades or so, due mainly to a wide
range of applications from natural sciences to social sciences, the so-called
fractional calculus has attracted an enormous attention of a large number
of researchers. Many fractional calculus operators, especially, involving
various special functions, have been extensively investigated and widely
applied. Here, in this paper, in a systematic manner, we aim to establish
certain image formulas of various fractional integral operators involving
diverse types of generalized hypergeometric functions, which are mainly
expressed in terms of Hadamard product. Some interesting special cases
of our main results are also considered and relevant connections of some
results presented here with those earlier ones are also pointed out.

1. Introduction

We begin by giving a brief outline of fractional calculus and its development.
Fractional calculus is a branch of mathematics, which has a long history and
has recently gone through a period of rapid development. Many earlier works
on the subject of fractional calculus contain interesting accounts of the theo-
ries of fractional calculus operators and their applications in diverse research
areas (see, e.g., Caputo [11], Oldham and Spanier [36], Ross [43], McBride
and Roach [31], Nishimoto [35], Miller and Ross [32]), Podlubny [40], Samko
et al. [48], Hilfer [18], Kilbas et al. [21], and the five volume works written
by Nishimoto [33]). The fractional calculus operators have been extensively
used in describing and solving various integral equations, ordinary differential
equations and partial differential equations in applied sciences such as fluid
mechanics, rheology, diffusive transport, electrical networks, electromagnetic
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theory, probability, turbulence and fluid dynamics, stochastic dynamical sys-
tem, plasma physics and controlled thermonuclear fusion, non-linear control
theory, image processing, non-linear biological systems and astrophysics.

In recent years, fractional integral and differential operators involving the
various special functions have been investigated by many authors, for ex-
ample, Kalla and Saxena [19], Kilbas and Saigo [20], Saigo [44], Kiryakova
[22, 23, 24, 25], Saigo and Kilbas [46], in particular, Srivastava and Saxena [59]
presented a survey-cum-expository paper which gives a remarkably clear, in-
sightful, and systematic exposition of the investigations carried out by various
authors in the field of fractional calculus and its applications and contains a
fairly comprehensive bibliography of as many as 190 further references on the
subject (see also [16]).

Due mainly to their various applications, image formulas of fractional cal-
culus operators have attracted not only mathematicians and statisticians with
diverse research interests but also electrical engineers, biologists, economists,
psychologists, and sociologists. Here, in this paper, in a systematic manner, we
establish certain image formulas of fractional integral operators involving some
new generalized Gauss hypergeometric type functions. Also importance of the
image formulas of the fractional calculus operators is highlighted and shared
with the interested readers.

2. Generalized special functions

Many important functions in applied sciences (which are popularly known
as special functions) are defined via improper integrals or infinite series (or in-
finite products). During last four decades or so, several interesting and useful
extensions of many of the familiar special functions (such as the Gamma and
Beta functions, the Gauss hypergeometric function, and so on) have been con-
sidered by many authors (see, e.g., in a chronological way, [12], [13], [15], [37],
[38], [53], [65], [56]). Throughout this paper, let C, Z, and N denote the sets
of complex numbers, integers, and positive integers, respectively, Z; = Z\ N
and Ng := NU {0}.

For our present investigation, we recall some required special functions. The
generalized hypergeometric series ,Fy (p, ¢ € Ng) is defined by (see [42, p. 73]
and [57, pp. 71-75]):

aq, ...y Otp; > (a1)p - (p)n 2"
(2.1) vfa [/31, oo Bas Z] HZ:O (B1)n - (Bg)n 1!
= Fy (a1, ..., ap; b1, ..., Bg; ),
where (), is the Pochhammer symbol defined (for A € C) by (see [57, p. 2 and
p. 5]):

1 =0)
(2:2) (N)n = AMA+1)...(A+n—-1) (neN)
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_ (A +n)

ey (AeC\Z)

and I'()\) is the familiar Gamma function.
The generalized Beta function B,(,a’ﬁ;'i’“) (x,y) is defined by (see [55])

1
2. BlesBirn) ;:/ 1=t R (B ——L ) dt
( 3) p (ZL',y) 0 ( ) 141 O‘aﬂa th (1 — t),u

(R(p) 2 0; min{R(z), R(y), R(a), R(B)} > 0; min{R(x), R(n)} > 0).
When & = p, (2.3) reduces to the generalized extended beta function
Bz()aﬁ;#) (z,y)
defined by (see [39, p. 37])

1
2.4)  BlAw ::/ L) R (e ——L
( ) p (:Cay) 0 t ( t) 1471 O‘767 th (1—1‘,')“ dt

(R(p) 2 0; min{R(z), R(y), R(a),R(B)} > 0; R(u) > 0).

The special case of (2.4) when g = 1 reduces immediately to the generalized
Beta type function as follows (see [38, p. 4602]):

a,f — pla,p;l

(25) = /01 L (0‘?5? T t)) “

(R(p) 2 0; min{R(z), R(y), R(a), R(3)} > 0).
The further special case of (2.5) when a = § reduces obviously to the ex-
tended Beta type function B, (z,y) due to Chaudhry et al. [12]:

BP (Z',y) = BI()OL,Q) (:C,y)

2.6 1
(26) :/0 (1 —1)Y exp (mp_ t)) dt  (R(p) 20).

The classical beta function B(z,y) is defined by

(2.7) B(z,y) ::/O Tt —t)rtdt (R(z) > 0; R(y) > 0).

It is clear to see the following relationship between the classical Beta function
B(x,y) and its extensions:

B(x,y) = Bo (2,9) = B (w,y) = B (2,y) = BEPY ().

Chaudhry et al. [13, p. 591, Egs. (2.1) and (2.2)] made use of the extended
Beta function B, (z,y) in (2.6) to extend the Gauss hypergeometric function
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oFy as follows: The extended Gauss hypergeometric function Fj, (a,b;c; z) is
defined by

o0

(2.8) Fy(a,bic;2) =) (a)n % 2—7

n=0
(|z] < 1; R(c) > R(b) > 0; R(p) = 0).

Similarly, by appealing to the generalized Beta function B,()a’a) (x,y) in (2.5),
Ozergin [12] and Ozergin et al. [13] introduced and investigated a further
potentially useful extension of the generalized Gauss hypergeometric functions
as follows: The extended generalized Gauss hypergeometric functions F,Sa”ﬁ ) )
is defined by

oo

(a,3) n
B (b+n,c—0b) z
F(aqﬁ) . e E P )

(2'9) D (a’ﬂ b? & Z) (a'>n B (b, c— b)

n!
n=0

(2] < 1; min{R(a), R(B)} > 0; R(c) > R(b) > 0; R(p) 2 0).
Based upon the generalized Beta function in (2.4), Parmar [39] introduced
and studied a family of the generalized Gauss hypergeometric functions

Fp(a,ﬁ;u) ()
defined by
© (a,B8;1) n
‘ B (b+n,c—0b) z
21 FBi) (g b e 2) = } : . =P ) z"
( 0) P (a’5 70’ Z) nzo(a'> B (b, c— b) n'

(121 < 15 min{R(a), R(B), R(1)) > 0; R(e) > R() > 0; R(p) 2 0).
Recently, Srivastava et al. [53] used the generalized Beta function in (2.3) to
introduce a family of some extended generalized Gauss hypergeometric func-
tions defined by

> B(‘%B?’%M) (b +n.c— b) P
2.11 F{B5m) (a,b;0;2) i= () —5 ’ =
( ) P (a’5 ) C’ Z) nzo(a') B (b, c— b) n'

(2] < 15 min{R(a), R(8), R(x), R()) > 0; R(e) > R(b) > 0; R(p) = 0).
It is easy to see the following relationships:
a,B;1,1 v ) — plaB P
FIS )(a,b,c,z)szg )(a,b,c,z),
a,B;1 cor ) = p(aB coe o)
FZS )(a,b,c,z)—FIS )(a,b,c,z),
FyoU (a,by¢52) = Fy (a,b5¢;2) 5
and
Fy™ (a,b;¢;2) = 2Fi (a,b ¢; 2).
Very recently, Luo et al. [28] investigated various properties of these ex-

tended functions and established some connections with the Laguerre polyno-
mial and Fox’s H-function.
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In recent years the incomplete Gamma type functions like (s, z) and I'(s, z)
have been investigated by a number of researchers. It is noted that both (s, x)
and T'(s, z) which are given in (2.12) and (2.13), respectively, are certain gener-
alizations of the classical Gamma function I'(z) and have proved to be impor-
tant for physicists and engineers as well as mathematicians. For more details,
one may refer to the following literature: [1], [14], [15], [27], [50], [51], [52], [53],
[54], [60] and [62].

The incomplete Gamma functions (s, x) and T'(s, z) are defined by

(2.12) (s, ) = / t*te7tdt  (R(s) > 0; x> 0)
0
and
(2.13) I'(s,x) := / t*"te~tdt(x > 0; R(s) > 0 when z = 0).

The (2.12) and (2.13) satisfy the following decomposition formula:
(2.14) v(s,z) + T(s,z) =T(s) (R(s) > 0).

The theory of the incomplete Gamma functions, as a part of the theory
of confluent hypergeometric functions, has received its first systematic expo-
sition by Tricomi [61]. Al-Musallam and Kalla (see [8] and [9]) considered a
more general incomplete gamma function involving the Gauss hypergeometric
function and established a number of analytic properties including recurrence
relations, asymptotic expansions and computation for special values of the pa-
rameters. Very recently, Srivastava et al. [56] introduced and studied some
fundamental properties and characteristics of a family of two potentially useful
and generalized incomplete hypergeometric functions defined as follows:

[(a1,2),a2,...,ap; | 2 (a3 @) n(a2)n - (ap)n 2"
2.15 z| = o 2t P
@15) v _ b, obg 7; O0)n - (bg)n 7l
and

[(a1,2),a2,...,ap; | X Jaaln(az)n - (ap)n 2"
2.16 r z| = A PR
216) T _ bi, by | T;J (b)n-(bg)n  nl

where (a1;x), and [a;; ], which are interesting generalizations of the Poch-
hammer symbol ()),, are defined in terms of the incomplete gamma type func-
tions v(s,x) and I'(s,z) as follows:

oy A+ :
(2.17) A z), = Ty A veC;, z>0)
and
(2.18) Dialy = CAFD e 5 0),

I'(A)
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These incomplete Pochhammer symbols (A;x), and [\;z], satisfy the fol-
lowing decomposition relation:

(2.19) Nz)y + [Nzl =), (A\veC; z>0).

Remark 2.1. For the convergence of the infinite series (2.15) and (2.16), one
may refer to Srivastava et al. [56, Remark 7).

3. Operators of fractional integration

A number of fractional integral operators have been developed and investi-
gated extensively, due mainly to the importance and usefulness in both the-
oretical and applicable senses. For our present investigation, we recall some
well-known fractional integral operators.

Appell’s hypergeometric function Fj in two variables (see, e.g., [10, p. 14]
and [58, p. 23]) is defined by

Fy(a, o, B, B'sm; 23 y)
(3.1) — () (@)n(B)m(B)n z™ y"
> T %

(M mtn m!

(max {[z], [y|} < 1).

m,n=0

o ,8,8"m

and 137,;’,[3,3’,77 of a function f (z) are defined, for () > 0, as follows (see
Saigo and Maeda [47]; see also Choi and Kumar [17]):

(ree" 27 15) )

Let o, o/, 8, 8/, 7 € C. Then the fractional integral operators Igf

(32 e L
_ W/o (x—t)"  t Fy(a,a, B, 8" sm;1 —t/z,1 —x/t) f (t)dt
and
(222" 1) (2
(33)  w

T /;o (t—2) "t Fy (a,0), 8, 8 m; 1 —w/t, 1 — t/x) £ (t) dt,

where the function f(t) is so constrained that the defining integrals in (3.2)
and (3.3) exist.
The above fractional integral operators can be written as follows:

8.8 d\" ' Btk B m+k
wo (2] o
(R(n) > 0k = [R(n)] + 1)

and

’ 7 d k , ) . .
0y (EE) @ = (<) () @
(RO > 0:k = [R(n)] + 1),
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The operators or integral transforms in (3.2) and (3.3) were introduced by
Marichev [29] as Mellin type convolution operators with the Appell function
F3 in their kernel. These operators were rediscovered and studied by Saigo
[45] as generalizations of the so-called Saigo fractional integral operators (see
also Kiryakova [25]). Such further properties as (for example) their relations
with the Mellin transform and with the hypergeometric operators (or the Saigo
fractional integral operators), together with their decompositional, operational
and other properties in the McBride space F'p (see [31]) were studied by Saigo
and Maeda [47] (see also some recent investigations on the subject of fractional
calculus in Agarwal [2, 3, 4], Agarwal and Jain [6], Agarwal et al. [7], Agarwal
et al. [5] and [34]).

The Appell function F3 in (3.2) and (3.3) satisfies a system of two linear
partial differential equations of the second order and reduces to the Gauss
hypergeometric function o F as follows (see [10, p. 25, Eq. (35)] and [58, p. 301,
Eq. 9.4 (87)]):

(3.6) Fy(a,n—a,B,mn— Bin;x5y) = o F1 (o, Bym; @ + y — ).
Further it is easy to see that

(37) F3(a705/35/3/577;x7y):2F1(055/6;77;'r)

and

(3.8) 30,0/, 8,8, m;2,y) = o Fa (o, B m3 ).

In view of the obvious reduction formula (3.7), the general operators reduce
to the aforementioned Saigo operators Ij f’" and Ig‘;&" (see, for details, [44]
and the references cited therein) defined as follows:

(3.9) (Igjf’" ) (z) = % /Om(x — 1), Fy (a + B, =i 1 — 2) f(t)dt
(R(a) > 0)
and
(3.10)
1

(Iﬁyﬁ;" ) (x) = m/ﬂc (t—z)* "t 2P, R (a +8,—m;a;1 — ?) f(t)dt
(R(a) > 0),

where the function f(t) is so constrained that the defining integrals in (3.9)
and (3.10) exist.

The Saigo fractional integral operators (3.9) and (3.10) can also be written
in the following form:

d k
(3.1) () @ = (1) () @
(R(0) < 0; k= [R(-a)] + 1)
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and

k
(3.12) (1887 ) () = (—%) (Ig P70 ) (x)

(R(e) < 0;k = [R(=a)] +1).

The Erdélyi-Kober type fractional integral operators are defined as follows
(see Kober [26]):

(3.13) (&6, f) (2) =

and

x—e N

I(a)

/Om(x —t)* e fdt (R(a) > 0)

"

B14) (L) (@) = o [ -0 et s () > 0.

where the function f(t) is so constrained that the defining integrals in (3.13)
and (3.14) converge.

The Riemann-Liouville fractional integral operator and the Weyl fractional
integral operator are defined as follows (see, e.g., [36]):

(315)  (RG.f) (@) = —— /Ox(w—t)alf(t)dt (R(a) > 0)

I'(«)
and
1 > 1
316 (Waf) @) = o / (t—2)* ()t (R(a) > 0).,

provided both integrals converge.

4. Relations among the operators

We recall some known relationships between the fractional integral operators
provided in the previous section. In view of the reduction formula (3.7), Saxena
and Saigo [49, p. 93, Egs. (2.15) and (2.16)] found the following relationship
between the Marichev-Saigo-Maeda and the Saigo fractional integral operators:

(4.1) (15:0778) @) = (127" ) @) (eC)
and
(4.2) (12827 1f) (@) = (1257777 ) (@) (€ ©).

The operator Iy 21y contains both the Riemann-Liouville and Erdélyi-
Kober fractional integral operators by means of the following relationships (see
Kilbas [21]):

(4.3) (RG.f) () = (Ig; *"f) (x)

and

(4.4) (€6:01) () = (15077 ) (@),
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while the operator Ig‘j‘o‘;"() unifies the Weyl and Erdélyi-Kober fractional in-
tegral operators as follows:

(4.5) Wi oof) (@) = (I f) ()
and
(4.6) (KSLf) (2) = (152" f) (2).

5. Power function formulas

Some required power function formulas of the familiar fractional integral
operators are recalled as in the following Lemma 5.1 (see [47] and [49]) and
Lemma 5.2 (see [44]).

Lemma 5.1. Let o, o/, 8, 8 and n € C with R(n) > 0. Then the following
formulas hold true:
(Igj,za’,ﬁﬁ/mzpfl) (1,)
(5.1) _ _Tlp+n—a-a = fl(p+ 0 ~a) ,ipa-a-1
Flp+ B (p+n—a—a)(p+n—ao —p)
(R(p) > max {0,R(a +a' + B —n), R(a’ - 5)})

and

(5.2)
(];z;;’,ﬁﬁ’mxpfl) (z)
_LA—p=PrA-—p-—ntata A —pta+f —n) ,ipa-a-1
FQl-pll-—pt+a+ta’ + —nI'(1l—p+a—7p)
(%(p) <1+ min {%(_ﬁ)a %(CM + CY/ - 77)) %(a + ﬁ/ - 77)} )

Lemma 5.2. Let o, 8, n, p € C with R(«) > 0. Then the following formulas
hold true:

@B, p—1 _ TTp+n—8) , 5
) (onf ’ ) = - A rnra)” ’
(R(p) > max {0, R(3 —n)})

and

afngp-1) (g = LA=Pp+BIA—ptn) 54
R I e S )

(R(p) <1+ min{R(B), R(n)} ).

The special case of (5.3) and (5.4) when 8 = —a yields, respectively, two
power function formulas involving the Riemann-Liouville and the Weyl type
fractional integral operators as in the following lemma (see [30]).
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Lemma 5.3. Let a, p € C. Then the following formulas hold true:
- L'(p) -

5.5 RGPt = ——L—grterl (R 0, ® 0

( ) ( O,z‘r )(‘T) F(p+0&)$ ( (CY) > ) (p) > )

and

59 V) (o) = L2t

Setting 5 = 0 in (5.3) and (5.4) gives, respectively, two power function
formulas involving the Erdélyi-Kober type fractional integral operators as in
the following lemma (see [30]).

(R(p) > R(a) > —1).

Lemma 5.4. Let o, p, n € C. Then the following formulas hold true:

(5.7) (500‘,’;730"71) (z) = %xﬂl (%(p +n) > 0)
and
(68) (kgL (@) = gi;in ’_’)p) 1 (R() > R(p) > —1),

6. Fractional integral operators and their image formulas

We present certain fractional integral formulas involving the generalized spe-
cial functions by using certain general pair of fractional integral operators. To
establish our image formulas we require the following concept of the Hadamard
products (see [41]).

Definition. Let f(z) := Y7 janz" and g(z) := > ° bp2" be two power
series whose radii of convergence are given by Ry and R, respectively. Then
their Hadamard product is the power series defined by

(fx9g)(2):= Z anbn2",
n=0

whose radius of convergence R satisfies Ry - Ry < R.

If, in particular, one of the power series defines an entire function and the
radius of convergence of the other one is greater than 0, then the Hadamard
product series defines an entire function, too. We can use the Hadamard prod-
uct to decompose a newly-emerged function into two known functions. For

example, the function pFISi’TB ) [2;b] can be decomposed as follows:

F(ayﬁ#’v)\) |: X1, - - 'axp ,Z,b:|
Pptr ylv"'ayp+7"

Tly--3Tp

=.F, { *pr(a,ﬁ;p,A) { 12;b] (|z] < ).

]

y1’ AR 7yT
We establish image formulas for the generalized Gauss hypergeometric func-
tion involving Saigo-Meada fractional integral operators (3.2) and (3.3), which

Yitry s Yp+r
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are expressed in terms of the new generalized Gauss hypergeometric type func-
tion FISQ*";“"‘), given in Theorems 6.1 and 6.2 below.

Theorem 6.1. Let z > 0, R(c) > R(b) > 0, R(p) > 0 and the parameters o,
o, v, v, n, p,v€C such that R(n) >0 and

R(p) > max {0, R(c + 0 +v—n),R(¢" —1v)}.
Then the following fractional integral formula holds:
(Lﬁfguvzn[t”’lfﬁa“ﬁ“*”(a,h<xvt)})($)

_ gotn—o—o'—1_ LT+ = )N(p+n—0—v—0)
Llp+v)(p+n—0—0)l(p+n—v—0d)

a, b;
a,Bik, B
X Fp( 2 [ C_vx]

(6.1)

b

* gk
T e o+ prn—o—d prn—v—o;

pp+v —o ptn—o—v—o; ]
T .

Proof. For convenience, we denote the left-hand side of the result (6.1) by A (z).
Then, using (2.11) and changing the order of integration and summation, which
is valid under the conditions given in Theorem 6.1, we get

80 = (52 [ Ep )] o

0" o glafira) g —b) (v )"
62) = (ﬁg”’“ 1y, 2 ne ) 00 ) )
n=0

B (b, Cc — b) n'
B 0o B:ga”@;fﬁ,ﬂ) (b +n,c— b) '7” oo o
‘Z;@" B (b,c—b) -g(hm [t° ]y@.

Now, we can make use of (5.1) with p replaced by p+n (n € Nyg) to find
from (6.2) that
(6.3)
PP BleAinsn) (b+mn,c—b)
A — pptn—o—oc' —1 n P )
@) =2 > e
o+ (p+v/ — o +0(p+n—0—v—o' +n) (y2)"
Fp+v' +n)l(p+n—0c—c +n)Np+n—v—0c'+n) nl
_ ppn-o—o'-1_L@L(p+ v = )l(p+n—0—-v—0)
Llp+v ) (p+n—0—0)(p+n—v—0)

OO B(avﬁ;"h#) b —b
3 (), B el
n=0

B (b,c—10)

(Pnlp+v = )ulptn—0—v—0)n (ya)
(v )nlptn—oc—0lp+n—v—0)n nl
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Finally applying the definition of Hadamard product to the last expression of
(6.3) with the aid of (2.11) is easily seen to yield the right hand side of (6.1).
This completes the proof of Theorem 6.1. (]

Theorem 6.2. Let z > 0, R(c) > R(b) > 0, R(p) > 0 and the parameters o,
o, v, v, n, p, v € C satisfying R(n) > 0 and
0<R(p) <1+min{R(—v),R(c+0" —n),R(c+1 —n)}.

Then the following fractional integral formula holds true:

(]g:g;,lw',n [tp—l F}gmﬂ;&u) (a,b; e (%))D () = pptn—o—o'—1

FA—p-v)IQl—p-—nt+o+o)TA-p—n+o+r)
Frl—pTl—-—p+o—v)Il—p—n+o+o +1)

(6.4) « FlesBirp) {a,b; 1}
p c x

l—p-vl-p-—ntoto,l1-p-—nt+to+r;y
*3F3 — | .

l—pl—p+to—-v,l—p-n+o+o +v;2

Proof. For simplicity, we denote the left-hand side of the result (6.4) by Q (z).
Then, by making use of (2.11), and changing the order of integration and
summation, which is justified under the conditions stated in Theorem 6.2, we
get

(6.5)
IUU ' |:tp 1 F(aﬁn#) (a,b;C; (%)):D ()

aﬁ;mu) 1\n
o0’ v | p—1 (b+7’L,C—b)(?)
<I [t Z B(b,c—1) n! ]) (z)

o avﬁa"@vﬂ') _ n s
= (@) Be btnc-b) 7 (Iz(gog ) [t”_”_l}) (z).
n=0

B(b,c—1) n!

Now, we can make use of (5.2) with p replaced by p —n (n € Ny) to find
from (6.5) that

(6.6)

, e’} B(Ghﬁ;’in“') (b+n C—b) F(l —p-V‘f‘?’L)
_ +n—oc—oc’'—1 p !
Q(x) = PN ;(a)n B(b,C*b) F(l —p+n)

Fl-—p-n+to+d +n)l1-p-—nt+to+v +n) (I)"

rMl—p+o—-—v+n)l(l-p-—n+o+o +v +n) n!

't—p—v)l—p—n+o+0)
ri—pTl—p+o—v)

— :CPJFW*U*U,*l
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o0

'l—p-—n+o+?) Z() B;()a’ﬁ;k"’#)(b—l—n,c—b)
Tl-—p-—n+ot+a +v) =" B (b,c—b)
L—p—v)ull=p=—n+to+d)ull—p-—n+to+v). 3)"

(1=p)n(Q—p+o—v)(l—p—n+o+o +v), ~ nl

X

Finally interpreting the last member of (6.6) by means of Hadamard product
and (2.11) is seen to arrive at the right-hand side of (6.4). This completes the
proof of Theorem 6.2. O

Corollary 6.3. Let > 0, R(c) > R(b) > 0, R(p) > 0 and the parameters o,
o, v, v, n, p,v€C such that R(n) >0 and

R (p) > max{0,R(c + o' +v—n), R —V)}.
Then the following fractional integral formula holds true:
(18'71;'/11’7”/777 [tp—l F}ga,ﬂ;u) (a, b; c; ’Yt)}) (x) — xp-i—’r]—a—a’—l

" Fp)L(p+v' —d')\T'(p+n—0—v—0') FlasBin) a,b§7$
(6.7) L(p+v)l(p+n—0—a)L(p+n—v—0)" " G

pp+v —d ptn—o—v—d,
x 3F3 , , , T
ap+v,p+n—o—d,p+n—v—o’;
Proof. Setting £ = p in Theorem 6.1 and using (2.10) yields (6.7). O

Corollary 6.4. Let x > 0, R(c) > R(b) > 0, R(p) > 0 and the parameters o,
o, v, v, n, p, v € C satisfying R(n) > 0 and
0<R(p) <1+min{R(-v),R(c+0 —n),Rc+v —n)}.

Then the following fractional integral formula holds true:

o’,a',u,v’, —1 o, . i
68 (e [t e (e (1)) )
Fl-p-v)Il-p-—n+o+d)
ri—pI(l—p+o—v)
Frl—p—n+o+v) FlaBin) a,b?z
l—p-n+o+o+v) P T

_ :Cernfafa'fl

" l—p—vl—p-—ntoto,1-p—nto+y
*k -
o l—-pl—p+to—-v,l—p—-n+o+o +;x
Proof. Setting x = p in Theorem 6.2 and using (2.10) yields (6.8). O

Corollary 6.5. Let > 0, R(c) > R(b) > 0, R(p) > 0 and the parameters o,
o, v, v, n, p,v€C such that R(n) >0 and

R(p) > max{0, R(c + o +v—n), R(e" —V)}.
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Then the following fractional integral formula holds true:
(I&f v’ {tpfl F}ga,ﬁ) (a, b; C;’yt)]) (1.) — pptn—o—o'—1
" Fp)(p+v' —c"\T'(p+n—0—v—0) Fla8) a, b;fyz
(6.9) Clp+v)C(p+n—0—a)(p+n—v—0o) ?
p,p+V —d,ptn—o—v-d
o+ ptn—o—d ptn—v—o; |

b

* 3F3

Proof. Setting k = =1 in Theorem 6.1 with the aid of (2.9) proves (6.9). O

Corollary 6.6. Let x > 0, R(c) > R(b) > 0, R(p) > 0 and the parameters o,
o, v, vV, n, p, v € C satisfying R(n) > 0 and
0<R(p) <l+mn{R(—v), R(c+" —n), Rlc+v" —n)}.

Then the following fractional integral formula holds true:

(6.10) (Ig:g;’”"/’" [t"fl Flgo"ﬂ) (a,b;c; (%))]) (x)
— prrnfoU'fl F(l — P V)F(l —p—n+to+ OJ)
r1—pITl—p+o—v)

l—p—-n+o+v) (@) a,b?z
Frl—p—-n4+o+o +v) ? G

- l—p-—v,l—p-—n+to+d,1-p-—n+to+iy
3 -
59 l1-pl—p+to—-—vl—p—nt+o+o +z

Proof. Setting k =y = 1 in Theorem 6.2 with the aid of (2.9) proves (6.10). O

Corollary 6.7. Let z > 0, R(c) > R(b) > 0, R(p) > 0 and the parameters o,
o, v, v, n, p,v€C such that R(n) >0 and

R (p) > max{0,R(c + 0" +v—n), Rl —v)}.
Then the following fractional integral formula holds true:
(6.11) (ng““”"7ﬁ9*1I@(a,a(;ytﬂ)(x)
— gptn—o—o'—1 L(p)L(p+v —d')
L(p+v)T(p+n—0—0)
Plptn—o—v—q)  [ab
L Llptn—o—v U)Ea .
L(p+n—v—o') G
mp+ﬂ—dm+n—o—v—d;]
/ / / /y Ty
ap+v ptn—o—ad,ptn—v—o

* 3F3

Proof. Setting kK = p = 1 and @« = 8 in Theorem 6.1 and using (2.8) yields
(6.11). O
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Corollary 6.8. Let x > 0, R(c) > R(b) > 0, R(p) > 0 and the parameters o,
o, v, v, n, p, v € C satisfying R(n) > 0 and

0<R(p) <l+mn{R(—v), R(c+" —n), Rlc+v —n)}.

Then the following fractional integral formula holds true:

(6.12) ([;;;”M”7Pp_lF;(a,&c;(%))})(x)
rl—p—v)I'l—p—n+o+0)
r1—pI'l—p+o—v)
l—p—n+o+v) 7 a,b;~
I'l—p—-n+o+ao+v) " ¢z
l—p-vil=p-—n+oto,l-p-—n+o+viy

l-pl—p+to—-v,l—p-n+o+o +v;x

— :CPJFW*U*U,*l

* 3F3

Proof. Setting kK = p = 1 and @ = § in Theorem 6.2 and using (2.8) yields
(6.12). O

We establish certain image formulas for the generalized Gauss hypergeo-
metric functions involving Saigo fractional integral operators (3.9) and (3.10)
which are given in Theorems (6.9) and (6.10) below.

Theorem 6.9. Let © > 0, R(c) > R(b) > 0 and the parameters o, v, n, p,
v € C such that R(p) > 0, (o) > 0 and R (p) > max{0,R(v —n)}. Then the

following fractional integral formula holds true:
(6.13) (I&’:’n [t"fl Féa’ﬁ*“’“) (a,b; c;'yt)}) (x)

_ :Cpfvfl F(p)r(p — v+ 77)
L(p—v)l(p+n+o0)

a, b;
pleBimp) | 777 F
X p C”')/.CC * o9l 0

psptmn—v; ]
vy
—v,p + n + o,

Proof. A similar argument as in the proof of Theorem 6.1 with the Saigo frac-

tional integral operators (3.9) and (3.10) will easily establish (6.13). So details
of the proof are omitted. (I

Theorem 6.10. Let z > 0, R(c) > R(b) > 0 and the parameters o, v, n, p,
v € C satisfying R(o) >0, R(p) >0 and R (p) < 1 + min {R(v), R(n)}. Then

the following fractional integral formula holds true:

(6.14) (172 [p=t Er (abies (1))]) @)
FA—p+v)lA—p+n)
'1—pl(l—p+n+v+o)
l—p+tv,l—p+mn 5

a, b;
« F}ga,ﬁ;mu) ' Ty o Fy -
c; x l—-p,l—p+n+v+o;z

—_ :Cp—ll—l
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Proof. A similar argument as in the proof of Theorem 6.2 with the Saigo frac-
tional integral operators (3.9) and (3.10) will easily establish (6.13). So details
of the proof are omitted. O

Some obvious special cases of Theorems 6.9 and 6.10, which are interesting
and (potentially) useful, are given in Corollaries 6.11-6.16.

Corollary 6.11. Let x > 0, R(c) > R(b) > 0 and the parameters o, v, n,
p, v €C, and R(p) > 0, R(o) > 0, and R(p) > max{0,R(v —n)}. Then the

following fractional integral formula holds true:
(6.15) (I&’:’" [t’kl Féa’ﬁ;“) (a,b; c;'yt)D (x)

— zp—l/—l F(p)r(p —V+ 77)
Llp—v)I(p+n+o0)

a, b;
~ Féa,ﬁ;u) [ 'yac] * oFY [

p,p+1n—v;
Yx
& p—v,pt+n+o;

Corollary 6.12. Let x > 0, R(c) > R(b) > 0 and the parameters o, v, 0,
p, v € C, R(o) >0, R(p) >0, and R(p) < 1+ min{R(v), R(n)}. Then the
following fractional integral formula holds true:

(6.16) (2 [t B (0t (1))]) @)
F(l—p+v)L(1—p+n)
ri—pIl—p+n+v+o)

« FlenBin) “’b;l % o 1fp+1/,1fp+77;2
P G l=pl=—p+n+v+ox

_ ZCP_V_l

Corollary 6.13. Let x > 0, R(c) > R(b) > 0 and the parameters o, v, 0,
p, v € C, R(p) >0, R(o) > 0, and R(p) > max{0, R(v —n)}. Then the
following fractional integral formula holds true:

(6.17) (1527 [t B (0,35 1)] ) ()
_ o1 Lo —v+m)
L(p—=v)L(p+n+o)

a, b7 pyp+n—v;
Fla.B) F .
* TR p—vp o

Corollary 6.14. Let x > 0, R(c) > R(b) > 0 and the parameters o, v, n,
p, v €C, R(o) >0, R(p) >0, and R(p) < 1+ min{R(v),R(n)}. Then the
following fractional integral formula holds true:

(6.18) (Ig;;;” [tp_l Féo‘”ﬁ) (a,b; c; (%))D (x)
Fl—p+v)L(1—p+n)
rl—pr(l—p+n+v+o)

— zpfl/fl
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xﬂgm{mbq}*QQ{ L=pt+v,1—p+my

T 1_Pa1_p+77+1/+0'7$

Corollary 6.15. Let x > 0, R(c) > R(b) > 0 and the parameters o, v, 0,
p, v € C, R(p) >0, R(o) > 0, and, R(p) > max{0, R(v —n)}. Then the
following fractional integral formula holds true:
(6.19) (I&’;’" [tpfl F, (a,b; c;'yt)]) (x)
— zp—l/—l F(p)r(p —v+ 77)
Llp—v)I(p+n+o0)

a, b; pyp+n—v;
pr[ "yx] * 2F2|: ,'yac].
G p—v,p+n+o0;

Corollary 6.16. Let > 0, R(c) > R(b) > 0 and the parameters o, v, n, p,
veC, R(o) >0, R(p) >0, R(p) <1+ min{R(v),R(n)}. Then the following

fractional integral formula holds true:

(6.20) (Ig,’gf [t’kl F, (a,b; c; (%))]) (x)
p—r—1 F(l 7p+l/)]'—‘(1 7p+77)
rl—pIl—p+n+v+o)

a, b; l—p+v,1—p+mn;
XFp 1 * ol 1
l=pl=—p+n+v+ox

=T

G

Certain image formulas for the generalized Gauss hypergeometric functions
involving the Erdélyi-Kober fractional integral operators (3.13) and (3.14) are
given in Theorems 6.17 and 6.18 below.

Theorem 6.17. Let x > 0, R(c) > R(b) > 0 and the parameters o, n, p,
v € C, R(p) >0, R(o) > 0 and R(p) > R(—n). Then the following fractional
integral formula holds true:

(6.21) (Eg,’; [t’kl Flga’ﬁ;“’“) (a,b;c;’yt)D (z)

r ‘ a, b; + 15
= xp717(ﬁ'+77) FleuBikpm) [ _790} * 1F7 [ P x} .

Fp+n+a)? ; ptn+a;’
Proof. Setting v = 0 in Theorem 6.1 with the operators (3.13) and (3.14) will
establish (6.21). So its proof details are omitted. O

Theorem 6.18. Let x > 0, R(c) > R(b) > 0 and the parameters o, n, p,
v e C, R(o) >0, R(p) >0, R(p) < 1+ R(n). Then the following fractional
integral formula holds true:

(6.22) (kg o7t o) (abie (7))]) @)
I'(l—p+n)
L(l1—-p+n+o0)

— :Cpfvfl
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a, b; 1—p+m
« Féa,ﬁ;mu) { 1} x 1 F) { Py
c T

l—p+n+o;z
Proof. Setting v = 0 in Theorem 6.2 with the operators (3.13) and (3.14) will
establish (6.21). So its proof details are omitted. O

Some obvious and interesting special cases of Theorems 6.17 and 6.18 are
given in the following corollaries.

Corollary 6.19. Let x > 0, R(c) > R(b) > 0 and the parameters o, n, p,
v €C, R(p) >0, R(o) >0 and R(p) > R(—n). Then the following fractional
integral formula holds true:

623) (&2 [t B0 (a,bre W)D (z)
+
= xp—lwp(aﬁ;u) [ %T] % [ pa %T] _
Llp+n+o) ? p+n+o;

Corollary 6.20. Let x > 0, R(c) > R(b) > 0 and the parameters o, n, p,
v €C, (o) >0, R(p) >0, and R (p) < 14+R(n). Then the following fractional

integral formula holds true:

(6.24) (icggﬂ [tﬂ L) (a,b,c; (%))D (z)
I'l—p+mn)
I(1—p+n+o)

a,b; 1—p+mn;
~ Féa,ﬁ;u) . T F P 77' al.
¢ x l—p+n+o; =z

_ zp—l/—l

Corollary 6.21. Let x > 0, R(c) > R(b) > 0 and the parameters o, n, p,
v €C, R(p) >0, R(eg) >0, and R(p) > N(—n). Then the following fractional

integral formula holds true:

(6.25) (5&; {tﬂ‘l E* (a,b; c;vt)}) (z)
T a, b; +n;
_ o1 _Llptn) F(a,m[ 7$:|*1F1|: Pt vw]-
Flp+n+o) ? & p+n+o;

Corollary 6.22. Let x > 0, R(c) > R(b) > 0 and the parameters o, n, p,
v €C, R(o) >0, R(p) >0, and R (p) < 1+R(n). Then the following fractional

integral formula holds true:

(6.26) (IC;?;ZZO [tp’l B (“’b?“ G))D

()
_ a, b; 1—p+mn;
_ :Cp—ll—l F(]‘ p+77) )F(a,ﬂ) . 1:| x 1y |: PTIL y
-

F(l—p+n+o) P l—p+n+o;z

Corollary 6.23. Let x > 0, R(c) > R(b) > 0 and the parameters o, n, p,
v €C, R(p) >0, R(o) >0, and R (p) > N(—n). Then the following fractional
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integral formula holds true:

(6.27) (5‘”7 [tp 1 F, (a,b;¢;y )])(
1 Llp+n) p+m;
— pr-1 ,
Y T ptnto) R P
Corollary 6.24. Let x > 0, R(c) > R(b)

> 0 and the parameters o, n, p,
v €C, R(o) >0, R(p) >0, and R (p) < 1+R(n). Then the following fractional

integral formula holds true:

(6.28) (/cg;go {t"’l F, (a,b; c; (%))D ()

(1 - a, b; L=p+mn
p—v—1 LA —p+n) F, ol I 7]
I'l—p+n+o) l—p+n+o;x
Certain image formulas for the generalized Gauss hypergeometric functions

involving the Riemann-Liouville and Weyl type fractional integral operators
(3.15) and (3.16) are given in Theorems 6.25 and 6.26 below.

Theorem 6.25. Let x > 0, R(c) > R(b) > 0 and the parameters p, o, p,
v € C with R(p) > 0 and min {R(o), R(p)} > 0. Then the following fractional

integral formula holds true:

)

(6.29) (Rg,m [t“l F{oBm) (a,b;cwt)D ()
1 T(p) ‘ a, b; p;
— ppto—1 JICHERND) In )
! Llp+o) * T g T
Proof. Setting v = —o in Theorem 6.1 with operators (3.15) and (3.16) will
easily establish (6.29). So the detailed account of proof is omitted. O

Theorem 6.26. Let x > 0, R(c) > R(b) > 0 and the parameters p, o, p,
v € C with R(p) > 0 and min {R(o), R(p)} > 0. Then the following fractional
integral formula holds true:

©30)  (Wiao | B (0 (3))]) @)

t
= ppto—1 Ml—p+ U)F(a”@;mu) e, b T F L=pto; Xl
Ll-p) 7 G L—p;
Proof. Setting v = —o in Theorem 6.2 with operators (3.15) and (3.16) will
easily establish (6.30) So the detailed account of proof is omitted. O

Some obvious and interesting special cases of Theorems 6.25 and 6.26 are
given in the following corollaries.

Corollary 6.27. Let x > 0, R(c) > R(b) > 0 and the parameters p, o, p,
v € C with R(p) > 0 and min {R(o), R(p)} > 0. Then the following fractional
integral formula holds true:

(6.31) (R&z [t’kl Fzgo"ﬁ;“) (a,b; c;'yt)D (z)
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. T(p) o [@s b p;
— gpto-1_—\F/  p(a,fsp) F '
v L(p+o) P T gy

Corollary 6.28. Let x > 0, R(c) > R(b) > 0 and the parameters p, o, p,
v € C with R(p) > 0 and min {R(c), RN(p)} > 0. Then the following fractional
integral formula holds true:

632 (Wra [t E (i (7))]) @

t
— gpto—1 Mp(a,ﬂ;u) @ b;l £ F l=p+oiy
I(l-p) °F e 1—pz|

¢
Corollary 6.29. Let x > 0, R(c) > R(b) > 0 and the parameters p, o, p,
v € C with R(p) > 0 and min {R(o), R(p)} > 0. Then the following fractional
integral formula holds true:

©633)  (Ri. [ EOD (@bienD)]) @)
. T(p) a, b; p;
_ o1 Fle.8) 2 ,
r T(p+o) ? { c;'YiE * 141 p+a;’YiE

Corollary 6.30. Let x > 0, R(c) > R(b) > 0 and the parameters p, o, p,
v € C with R(p) > 0 and min {R(o), R(p)} > 0. Then the following fractional
integral formula holds true:

(6.34) (w; [tﬂ L a,b; c,( ))D ()
I(1 p+0) a, b; 4 Il—p+o; 5
— ppto—1 2\ T P9 p(e,f) L F —1.
v (1—p) °? [ ¢ x i 1—0p; x
Corollary 6.31. Let x > 0, R(c) > R(b) > 0 and the parameters p, o, p,

v € C with R(p) > 0 and min {R(c), RN(p)} > 0. Then the following fractional
integral formula holds true:

(6.35) (RG., [t°7" Fpy (a,bs 37y 1)]) ()
. T(p a, b; Ps
= pto 17F‘ F :
! L(p+o) p{ G e T

Corollary 6.32. Let x > 0, R(c) > R(b) > 0 and the parameters p, o, p,
v € C with R(p) > 0 and min {R(o), R(p)} > 0. Then the following fractional

integral formula holds true:

(6.36) (wgm [tp’l F, (a,b; e (%))D ()

_ a, b; 1—p+o;
_ o1 LA —p+o0) ) ol I P 7]
'l -—p) ¢z 1-—p
The Marichev-Saigo-Maeda fractional integrations (3.2) of the product of

tP~1 and generalized incomplete hypergeometric functions (2.15) and (2.16),
respectively, are given in the following theorem (see [54]).
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Theorem 6.33. Leta, o', 8, B/, v, p € C, x > 0 such that min {R(v), R(p)} >
0 and

R(p) > max[0,R(a+a' + 8 —7), Rla' — 3)].
Then the following formulas hold true:
(6.37)

(1522 [ gat)]) ()

_ pptr—a—a/—1 L(pl(p+ B = )l'(p+y—a—-p—-a)
Flp+B)(p+y—a—-a)(p+y—B—0)
(0:1,1'),(12,..-,ap,(p),(p‘i’ﬂ/*Oé/),(pﬁ”)/*()é*ﬂ*a/); ax
bi,...sbg, (p+8),(p+v—a—a),(p+r—-B8—-a);

Xp+3 Vq+3 l

and

(6.38)

(12 [ ()] ) ()
_ :L,p—‘,-'y—a—o/—l F(p)r(p + BI - O/)F(p +y—a— 6 - CY/)
Llp+p)(p+y—a—-a)l(p+y—B—a)
(a’laz)aaﬂa- ce aapv(p)v(p+ﬂ/ 70/)5 (p+7705 7570/); a,:C‘|

bi,...sbg, (p+B),(p+v—a—a),(p+v—-B8—-0a);

Proof. Let the left-hand side of (6.37) be denoted by Z. Applying (2.15) with
(3.2) and changing the order of integration and summation, we find

(639) T — (Iaa BBy [tp 1 Z (11, bl 0,2 (b )(ap) . (a;')n‘|> (z)
n=0 ’

. Z a1, bl a2 (b )(ap) . (a) (I&;ca’,ﬁ,ﬁ','y {tp-‘,-n—l}) (1,)
n=0

Xp+3 Lgt3 [

n!

Using the stated conditions here, for any k € Ng, and R (p+n) > R(p) >
max {0, R(a+ o' + 8 —7), R(¢’ — F')}, and applying (5.1) with p replaced by
p + n, we obtain

T = Z,er'yfafa -1 Z a‘l? 0’2 (ap)
n=0 bl (b )

Llp+n)lp+ B —a' +n)l(p+y—a=-F—a'+n) (ax)"
Plp+ B +n)(p+y—a—ao'+n)l(p+y—-B-a +n) nl
— :Cer'yfafa’fl F(p)F(p + ﬁ/ - a’)F(p + D ® B ﬁ - O/)
Plp+B)(p+y—a—-a)l(p+y—B—a)
— (ar;2)n(a2)n - - (ap)n (Dnlp+6 = )nlp+y—a—-B—-a), (ax)"
- Z: b1 bg)n (p+Bmp+r—a—an(p+y=B—a)n n!
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This, in view of (2.15), proves (6.37).
Similarly (6.38) can be proved. O

Taking o/ = 0 in Theorem 6.33, we get the Saigo hypergeometric fractional
image formulas of the generalized incomplete hypergeometric type functions
pLqlz] and ,v4[#] as in the following corollary.

Corollary 6.34. Under the modified conditions, the following formulas hold
true:

L(p)T(p+~—a—p)
Lip+v—a)l'(p+~v-5)

(1P et pglan)] ) (@) = a7

(640) (ahx)’aa,_,_7ap,(p),(p+’)/7047ﬂ);
X2 Yat2 biy. by (p+y—a), (p+y—B);
and
- T(p)T —a—
(T2 [t yyan)] ) () = artre? r<p(i)v(p;_>;<p - B)ﬂ)
(6.41)

(a’lvx)va’%"'aapv(p)v(p‘i”yfaiﬂ); ]

X QF 2 ax
" q+l b, by, (p+ 7 —a), (p+ 7 = B);

Setting o’ = 0 and a = 0 in Theorem 6.33, we get the Riemann-Liouville
fractional image formulas of the generalized incomplete hypergeometric type
functions ,I'q[2] and ,7v,[2] as in the following corollary.

Corollary 6.35. Under the modified conditions, the following formulas hold
true:

(6.42) (Rg,z [t/kl ;D'Vq(at)]) ()
~ piya Lip) (a1,x),a2,...,ap, (p);
= gPt 7F(p+’>’) Xp+1 Yg+1 [ b1,---,bq,(p+7);a4
and
(6.43) (Rg,m [tp_l qu(at)]) ()
— g1 F(p) (alvx)va%"'vap’(p);ax
B T(p+7) 7ot [ b, -5 by, (P +7);

We present formulas for the right-hand sided Marichev-Saigo-Maeda frac-
tional integration (3.3) of the generalized incomplete hypergeometric functions
pL'qlz] and ,v4[2] asserted by the following theorem.

Theorem 6.36. Let x >0 and o, o/, B, 8, v, p, a € C such that
min {R(v), R(p)} > 0 and
R(p) <1+ min{R(-B),R(a+a" —7),R(a+ 8 —7)}.
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Then the following formulas hold true:

(6.44) (12277 1770 1, (5)]) (@) = ool
Fl—p-pPTl—p—v+a+dd)T1l—p—v+a+p)
Fl-pT(l—p—v+a+ao +p)01—-p+a-p)

(a1,x),a2,..., ap,
Xp+3 Vq+3

1=p=0),l=—p—v+a+d), 1-—p—y+a+p);

a
(1=p),A—p—ry+a+a +8),(1-pta-p);a
and
09 (B (2)]) <o

Fl-—p-BT(1l-p—y+tatd)(1-—p—y+ta+tf)
'l-pIl'l—p—v+a+o'+8)IT1-p+a-p)
l(alaz)aGQa-'-aapv(lpﬂ)v

X r
pEs ks blv'-'van(]'*p)v

A—p—vyt+a+d), I-p—y+a+tf)a
(l=p—y+atd +p5), (1-pt+ta-p)z
Proof. A similar argument as in the proof of Theorem 6.33, here applying (2.15)

and using (3.3), will establish the results in Theorem 6.36. So the detailed
account of its proof is omitted. O

Setting @’ = 0 in Theorem 6.36, we get the right-sided Saigo hypergeometric
fractional image formulas of the generalized incomplete hypergeometric type
functions ,I'y[z] and ,7,[2] as in the following corollary.

Corollary 6.37. Under the modified conditions, the following formulas hold
true:

646) (L [ (5)]) @)

_ gpir—a-1Pd—p =B —p—v+a)
Fl-pT(l=p+a-p)
(a1,@),a2,...,ap,(L=p—P),(L—p—7y+a);
[ bi,..., 00, (1 —p), (1= p+a—p);

a
Xp+2 Vq+2 -
p+2 Jg+ T

and
(6.47) ([g;go—v,—ﬁ [tp—1prq (%)D (@)
— ppty—a-l IFl—p—-PBr(1l—-—p—v+a)
L(1=pT(1—p+a—p)
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a
T

(a/lax)aa/Qa"'7a/pa(1 _p_ﬁ))(l _p_7+a)7
xp+2Fq+2

blv'-'abqv(l7p)7(17p+afﬂ);

Setting o’ = 0 and « = 0 in Theorem 6.36, we obtain the Riemann-Liouville
fractional image formulas of the generalized incomplete hypergeometric type
functions ,I'¢[z] and ,7,[2] as in the following corollary.

Corollary 6.38. Under the modified conditions, the following formulas hold
true:

648)  (Rio [0 (5)]) @)

LI -p—17)
= Pt 1ﬁ Xp+1 VYg+1

(alaz)aa%'-'vapa(l7/)77); g
b1,...,bq, (1 —p);

and

(6.49) (R;w[ﬂfﬁJg(%ﬂ)(m

_ zp-i—w—ll—‘(l — P ’Y)

% T (a15z>aa27'-'7apa(17/)77);a
r—p oot x|

bla-'-ab%(l*p);

A similar argument as above will establish the following formulas in Corol-
laries 6.39 and 6.40 whose proofs are left to the interested readers.

Corollary 6.39. Let x > 0, «, 7, p € C with min {R(v), R(p)} > 0. Then the
following formulas hold true:

(6.50) (500"’; [t”_lpvq(at)]) (x)
_.’L'p_l F(p-i—’y) % (alvx)7a25-'-7apv(p+7); ax
Tlp+v+ ) p1 Yot bi,..., g, (p+ 7+ a);
and
(6.51) (5&’; [tpfl qu(at)]) (z)
_ F(p+’7) (alax)aa%---vapa(p—’—’y);
=Pl T % r .
T Ty ta) PP b b oy +a);

Corollary 6.40. Let x > 0, «, v, p, a € C with min {R(y), R(p)} > 0. Then
the following formulas hold true:

652 (K2 [ (3)]) @

(alvx)va%-'-vapv(]-7p+7); a
X —
) et dat b, by, (1—p+vy+a)



and

(6.5
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3)
(e [eror (3)]) @
p—1 F(l—p—f—’y) (0:1735)7112;---;04;)7(]-*p‘i”y); a
=z Xp+1 g1 -
'l—p+y+a) bi,...,0g, (1 —p+v+a); x
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