• Title/Summary/Keyword: Aperture Theory

Search Result 63, Processing Time 0.028 seconds

Design of a TEM Horn Antenna for Impulse Response Measurement System (임펄스 응답 측정 시스템용 TEM 혼 안테나의 설계)

  • 정경호;편성호;정삼영;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.669-676
    • /
    • 2003
  • In this paper, a novel design method for an ultra-wide band TEM horn antenna is proposed on the basis of parallel plate waveguide theory. A principle of TEM modes generation is analyzed and the characteristics of this antenna are experimentally investigated. The proposed TEM horn antenna has an exponentially tapered structure to increase matching bandwidth. Also, the designed TEM horn has shortened length but increased aperture so that the bandwidth for cutoff frequency is increased. The measured result show that the proposed TEM hem antenna has the frequency band of 75 MHz to 1200 MHz for VSWR less than 2.0 and the bandwidth of the TEM horn becomes more than twice comparing to that of a linearly tapered TEM hem. It is anticipated that the manufactured antenna is applicable to UWB systems for impulse response measurement.

A Study on Water Droplet Lens Effect of UV Laser Micromachining Process (UV 레이저 미세 가공공정에서의 물 액적 렌즈 효과에 관한 연구)

  • Shin, Bo-Sung;Lee, Jung-Han
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.773-777
    • /
    • 2012
  • Recently UV laser micromachining processes is widely introduced to meet the needs of advanced components of IT, BT and ET industries. Due to the characteristics of non-contact and high-speed laser processing, UV laser micromachining is applied to manufacture very thin substrate such as polymer, metals and composite. These minimum line width obtained by UV laser micromachining is generally determined from laser wavelength, optical lens and its numerical aperture. In this paper we will show the lens effect of water droplet on the surface of workpiece to reduce the line width when UV laser light is irradiated and focused through the water droplet. Because of the refraction effect generated by the semi-spherical or spherical shape of water droplet, we can find smaller line width. And water droplet could not only protect thermal deformation, but also carry away burr around micro dent. Firstly fundamental theory of minimum line width was derived from relationship between the geometry of water droplet and laser light trace, and then experimental and simulation results will be finally compared to verify the effectiveness of water droplet lens effect of UV laser micromachining process.

ANALYSIS OF THE PERMEABILITY CHARACTERISTICS ALONG ROUGH-WALLED FRACTURES USING A HOMOGENIZATION METHOD

  • Chae, Byung-Gon;Choi, Jung-Hae;Ichikawa, Yasuaki;Seo, Yong-Seok
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.43-52
    • /
    • 2012
  • To compute a permeability coefficient along a rough fracture that takes into account the fracture geometry, this study performed detailed measurements of fracture roughness using a confocal laser scanning microscope, a quantitative analysis of roughness using a spectral analysis, and a homogenization analysis to calculate the permeability coefficient on the microand macro-scale. The homogenization analysis is a type of perturbation theory that characterizes the behavior of microscopically inhomogeneous material with a periodic boundary condition in the microstructure. Therefore, it is possible to analyze accurate permeability characteristics that are represented by the local effect of the facture geometry. The Cpermeability coefficients that are calculated using the homogenization analysis for each rough fracture model exhibit an irregular distribution and do not follow the relationship of the cubic law. This distribution suggests that the permeability characteristics strongly depend on the geometric conditions of the fractures, such as the roughness and the aperture variation. The homogenization analysis may allow us to produce more accurate results than are possible with the preexisting equations for calculating permeability.

Design of a Single Pulse Laser Range Finder with Er:Yb:glass Microchip Lasers (어븀:이터븀:유리 마이크로칩 레이저를 이용한 단펄스 거리측정기 설계)

  • Koh, Hae Seog;Lee, Chang Jae;Park, Choong Bum;Jeon, Hyoung Ha;Ahn, Pil Dong;Park, Do Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.295-305
    • /
    • 2018
  • We present a passively Q-switched monolithic Er:Yb:glass microchip laser developed in our lab. The microchip laser can produce pulses at 1535 nm of the 'eye-safe' wavelengths with the pulse energy of 50 uJ and the pulse width of 4-6 ns. Using the laser we also designed and developed a pulsed Er:Yb:glass microchip laser rangefinder. Expressions for background and signal power, noise, and signal-to-noise ratio are reviewed. A computer simulation was used to optimize laser power, receiver aperture, and preamplifier bandwidth for the efficient system design of the laser rangefinder. Experimental results are presented to compare with the theory.

On Performance of Adaptive Array and Sidelobe Canceller (간섭 신호 제거를 위한 Adaptive Array 및 측엽 제거 기법의 특성 분석)

  • Seo, Jeong-Uk;Lee, Sang-Cheol;Choe, Yeong-Gyun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.2
    • /
    • pp.61-70
    • /
    • 1984
  • This paper examines the array antenna theory, basic relations between the array size (aperture) and its beamwidth and resultant patterns. This paper also provides array antenna system design criteria, mainly maximizing the signal-to-noise ratio (SNR) and its corresponding optimum array structure and weight functions. Explicit new expressions for array performance are also illustrated in terms of the array output SNR. An example is provided for a 37-element planar array to explicitly illustrate the beam-forming and nulling operations of the array. Fundamentals of sidelobe canceller (SLC) systems have been discussed along with a derivation of new SLC equations for optimum weights.

  • PDF

Numerical reconstruction of Incoherent Holography using the triangular interferometer (삼각형 간섭계를 이용한 Incoherent 홀로그래피의 수치적 재생에 관한 연구)

  • Bae, You-Seok;Lee, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.388-390
    • /
    • 1994
  • We are familiar with the holography in these days. For making holography the coherent sources like LASER are used in many fields. But coherent holography has many problems. Coherent holography needs many instrument for practical use like 3-D TV case. In solving the problem we use the non-coherent source. Nowadays many methods like conoscopic holo graphy using anisotropic crystal, shadow casting and interferometric systems are suggested. In this paper we make the hologram using the triangular interferometric systems. [1],[2],[3],[4]. We explain the afocal and double-afocal system which consists of the triangular interferometric system. The holography made in one point and two point cases is imaged on CCD camera and we handle the image data digitally for the reconstruction efficiently. In reconstructing the hologram the Fraunhofer diffraction theory is used. We adopt the rectangular aperture for the convenience of calculation. In the future we must reconstruct the perfect 3-Dimensional object by optical method. For this, we have many problems like resolution problem. We must solve these problem for perfect reconstruction.

  • PDF

Application of the Homogenization Analysis to Calculation of a Permeability Coefficient (투수계수 산정을 위한 균질화 해석법의 적응)

  • 채병곤
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.79-86
    • /
    • 2004
  • Hydraulic conductivity along rock fracture is mainly dependent on fracture geometries such as orientation, aperture, roughness and connectivity. Therefore, it needs to consider fracture geometries sufficiently on a fracture model for a numerical analysis to calculate permeability coefficient in a fracture. This study performed new type of numerical analysis using a homogenization analysis method to calculate permeability coefficient accurately along single fractures with several fracture models that were considered fracture geometries as much as possible. First of all, fracture roughness and aperture variation due to normal stress applied on a fracture were directly measured under a confocal laser scaning microscope (CLSM). The acquired geometric data were used as input data to construct fracture models for the homogenization analysis (HA). Using the constructed fracture models, the homogenization analysis method can compute permeability coefficient with consideration of material properties both in microscale and in macroscale. The HA is a new type of perturbation theory developed to characterize the behavior of a micro inhomogeneous material with a periodic microstructure. It calculates micro scale permeability coefficient at homogeneous microscale, and then, computes a homogenized permeability coefficient (C-permeability coefficient) at macro scale. Therefore, it is possible to analyze accurate characteristics of permeability reflected with local effect of facture geometry. Several computations of the HA were conducted to prove validity of the HA results compared with the empirical equations of permeability in the previous studies using the constructed 2-D fracture models. The model can be classified into a parallel plate model that has fracture roughness and identical aperture along a fracture. According to the computation results, the conventional C-permeability coefficients have values in the range of the same order or difference of one order from the permeability coefficients calculated by an empirical equation. It means that the HA result is valid to calculate permeability coefficient along a fracture. However, it should be noted that C-permeability coefficient is more accurate result than the preexisting equations of permeability calculation, because the HA considers permeability characteristics of locally inhomogeneous fracture geometries and material properties both in microscale and macroscale.

A Study on the Rock Pressure Wedge Failure During Ground Excavation (대규모 지하굴착시 쐐기파괴로 인하여 발생하는 토압에 관한 연구)

  • 이승호
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • The geological characteristics of Korea are that we can encounter the rock layer only after 10m of excavation, methods to presume the rock pressure distribution of the rock layer is urgently needed. When using the existing empiric science of Terzaghi-Peck, Tschebotarioff to measure the rock pressure of the rock layer, underestimate the real strength because of the cohesion is ignored. Therefore calculating the horizontal sliding force of wedge block, which includes the dips and shear strength of discontinuities and surcharge load etc., think to be to getting a closer rock stress of the real rock pressure acting upon the earth structure in rock mass. This research use Coulomb soil pressure theory assuming that the backfill soil will yield wedge failure when it has cohesion, applying Prakash-Saran(l963), and then it uses equilibrium of force and shear strength $\tau$=c+$\sigma$tan $\Phi$ of the cliscontinuities. Analyzing shear strength and dips of cliscontinuities using calculated theory according to the status of discontinuities aperture, we were able to find out that because the cohesion and friction angle of the rock layer itself is large enough, how the dip directions and dips facing the excavation face is the only factor deciding whether or not the rock stress is applied. The evaluated theory of this research should be strictly estimated, so that the many parameters such as c, $\Phi$value, types and structures of rock class, excessive lateral pressure, dynamic load, earthquake, needed later when calculating shear strength of discontinuities and especially the ground water effect acting on rock layer should be coumpted with many measuring data achieve at the insite to study the application.

  • PDF

Superresolution of Optical Imaging System (광결상계의 초분해능)

  • 조영민;김종태;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.349-355
    • /
    • 1994
  • Superrsolution of an optical imaging system, which resolves $\epsilon_O$ (half width of the square top amplitude impulse function) less than the Rayleigh's resolution limit $\epsilon_R$, is theoretically treated by using the diffraction theory, and an experimental system is proposed. Initially superresolution is stated as an inverse problem, and an integral equation is derived as a function of parameter $\beta$, which is positive. The integration is numerically carried out for the given aperture and those given values of $\beta$, which is 1, 5, 10, 15, and 20. 1/2$\times$FWHM's of the amplitude impulse functions are meassured for the cases of diffrent value of {J and in the case of $\beta=5$, the half-width already approaches to $\epsilon_O=0.1$,urn, which is, in the case of the present work, one fifth of the Rayleigh's resolution limit. It is found both the pupil function and the phase of the Huygens wave are to be modified, and theories of the pupil function modulation plate and the phase modulation hologram plate are also presented. The result obtained may be useful in ultrafine optical lithography.graphy.

  • PDF

Wide Bandwidth Circularly Polarized Aperture Coupled Microstrip Antenna using Cross-slot (십자 슬롯을 이용한 광대역 원형편파 적층 개구결합 마이크로스트립 안테나)

  • 양태식;이범선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.748-754
    • /
    • 2000
  • A novel single feed wide band CP stacked microstrip antenna using crossed slots has been designed, fabricated and measured. For the single rediating element the designed 10dB return loss bandwidth is 34.5%99.45~13.54 GHz), 3dB axial ratio bandwidth is 18.7%(11.17~13.39GHz), and 6 dB gain bandwidth is 29%(10.21~13.64GHz). For the 2$\times$2 array designed using a sequential rotation method, the 10dB return loss bandwidth is 35.9%(9.69~13.94GHz), 3dB axial ratio bandwidth is 34.6GHz (9.93~14.03GHz), and 6dB gain bandwidth is 27.4%(10.35~13.6GHz). For the fabricated 8$\times$8 array antenna, the 10dB return loss bandwidth is 27.3%(10.17~13.41GHz), 3dB axial ratio bandwidth is 27.9GHz(10.1~13.4GHz), and the radiation pattern is good agreement with theory. This antenna can be used for broadband applications for communications or broadcasting in Ku band.

  • PDF