Abstract
Hydraulic conductivity along rock fracture is mainly dependent on fracture geometries such as orientation, aperture, roughness and connectivity. Therefore, it needs to consider fracture geometries sufficiently on a fracture model for a numerical analysis to calculate permeability coefficient in a fracture. This study performed new type of numerical analysis using a homogenization analysis method to calculate permeability coefficient accurately along single fractures with several fracture models that were considered fracture geometries as much as possible. First of all, fracture roughness and aperture variation due to normal stress applied on a fracture were directly measured under a confocal laser scaning microscope (CLSM). The acquired geometric data were used as input data to construct fracture models for the homogenization analysis (HA). Using the constructed fracture models, the homogenization analysis method can compute permeability coefficient with consideration of material properties both in microscale and in macroscale. The HA is a new type of perturbation theory developed to characterize the behavior of a micro inhomogeneous material with a periodic microstructure. It calculates micro scale permeability coefficient at homogeneous microscale, and then, computes a homogenized permeability coefficient (C-permeability coefficient) at macro scale. Therefore, it is possible to analyze accurate characteristics of permeability reflected with local effect of facture geometry. Several computations of the HA were conducted to prove validity of the HA results compared with the empirical equations of permeability in the previous studies using the constructed 2-D fracture models. The model can be classified into a parallel plate model that has fracture roughness and identical aperture along a fracture. According to the computation results, the conventional C-permeability coefficients have values in the range of the same order or difference of one order from the permeability coefficients calculated by an empirical equation. It means that the HA result is valid to calculate permeability coefficient along a fracture. However, it should be noted that C-permeability coefficient is more accurate result than the preexisting equations of permeability calculation, because the HA considers permeability characteristics of locally inhomogeneous fracture geometries and material properties both in microscale and macroscale.
암석 내 균열을 따른 수리전도도는 균열의 기하학적 요소, 즉 방향, 간극, 거칠기 그리고 상호 연결도에 주로 좌우된다. 따라서, 균열 내 투수계수를 정확하게 계산하기 위해서는 이와 같은 기하 요소들을 최대한 계산모델에 반영할 필요가 있다. 이 연구에서는 균열 기하양상을 최대한 정확히 반영한 균열모델에서 기존 수치해석과는 다른 새로운 방법인 균질화 해석법(homogenization analysis method)을 이용하여 균열을 따른 투수계수를 구하기 위해 수치해석을 수행하였다. 먼저, 공초점 레이저 스캔 현미경(Confocal Laser Scanning Microscope)을 이용하여 암석시료의 균열 조도와 균열에 가한 수직압축력의 변화에 따른 간극 변화량을 직접 측정하고, 이와 같이 획득한 자료는 균열모델 재현을 위한 입력자료로 사용되었다. 재현된 균열모델을 토대로 한 균질화 해석법은 미시규모(microscale) 매질특성과 거시규모(macroscale) 매질특성을 동시에 고려하여 투수계수를 계산할 수 있는 것이다. 즉, 균질화 해석법은 주기적 미세구조(microstructure)를 갖는 미소 불균질 물질의 거동특성을 구명하기 위해 개발된 새로운 형태의 섭동(perturbation) 이론이다. 이는 균질한 미시규모에서 미시 투수특성을 계산한 후, 거시규모에서의 균질화 투수계수를 계산하게 된다. 그러므로, 이 방법은 균열 기하양상의 국부적 영향을 고려한 투수특성을 정확히 해석할 수 있다. 균질화법을 이용한 투수계수 산정결과를 기존 연구에서 제안한 경험식과 비교하여 그 타당성을 검증하기 위해 전술한 2차원 균열모델을 이용한 투수계수 계산을 수행하였다. 균열모델은 거칠기(roughness)를 반영하고 동일한 간극을 할당한 평행판 모델을 가정하였다. 계산결과에 의하면, 균질화 해석법에 의해 계산한 C-투수계수는 실내투수시험에 의해 구한 투수계수와 같은 범위의 값을 가지거나 $10^1$ 정도의 차이를 보여, 그 계산결과는 타당하다고 볼 수 있다. 그러나, 균질화 해석법은 국부적으로 불균질한 균열 기하양상과 물질특성이 미시규모와 거시규모에서 모두 고려되므로, 이들 특성을 정확히 알고 있을 경우 기존에 제안된 경험식들에 의한 계산결과 보다 균질화 해석법의 결과가 훨씬 정확함을 주목하여야 한다.