• Title/Summary/Keyword: Antimicrobial peptide resistance

Search Result 29, Processing Time 0.026 seconds

Enhancement of antimicrobial peptide genes expression in Cactus mutated Bombyx mori cells by CRISPR/Cas9

  • Park, Jong Woo;Yu, Jeong Hee;Kim, Seong-Wan;Kweon, Hae Yong;Choi, Kwang-Ho;Kim, Seong-Ryul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.37 no.1
    • /
    • pp.21-28
    • /
    • 2018
  • CRISPR/Cas9 gene editing system is an efficient method to mutation in a sequence specific manner. Here we report the direct transfection of the Cas9 nuclease and gene specific guide RNA can be used in BM-N cell line derived from Bombyx mori ovarian tissue to enfeeble function of endogenous gene in vitro. We have used gene editing system to negative regulation components of major signaling cascade, the Toll pathway, which controls B. mori resistance to microbe infections, such as fungi and gram positive bacteria. We demonstrate that the $I{\kappa}B-like$ protein Cactus may controls the activation of transcription factors such as Rel A and Rel B. The direct transfection of Cas9 nuclease and Cactus-specific guide-RNA complex may be used in BM-N cells to disrupt the function of endogenous genes in vitro. A mutation frequency of 30-40% was observed in the transfected cells, and various mutations caused the target region. Moreover, RT-PCR analysis revealed that Cactus gene was down regulated after these mutations. More importantly, mutation of BmCactus stimulated expression of lysozyme, moricin, and lebocin genes. These results suggest that the CRISPR/Cas9 systems are expected to efficiently induce site-specific mutations and it was possible to produce antimicrobial peptide through the gene editing.

Novel Approaches for Efficient Antifungal Drug Action

  • Lee, Heejeong;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1771-1781
    • /
    • 2018
  • The emergence of multidrug-resistant microorganisms, as well as fungal infectious diseases that further threaten health, especially in immunodeficient populations, is a major global problem. The development of new antifungal agents in clinical trials is inferior to the incidence of drug resistance, and the available antifungal agents are restricted. Their mechanisms aim at certain characteristics of the fungus in order to avoid biological similarities with the host. Synthesis of the cell wall and ergosterol are mainly targeted in clinical use. The need for new approaches to antifungal therapeutic agents or development alternatives has increased. This review explores new perspectives on mechanisms to effectively combat fungal infections and effective antifungal activity. The clinical drug have a common feature that ultimately causes caspase-dependent cell death. The drugs-induced cell death pathway is associated with mitochondrial dysfunction, including mitochondrial membrane depolarization and cytochrome c release. This mechanism of action also reveals antimicrobial peptides, the primary effector molecules of innate systems, to highlight new alternatives. Furthermore, drug combination therapy is suggested as another strategy to combat fungal infection. The proposal for a new approach to antifungal agents is not only important from a basic scientific point of view, but will also assist in the selection of molecules for combination therapy.

Comparative Analyses of Four Complete Genomes in Pseudomonas amygdali Revealed Differential Adaptation to Hostile Environments and Secretion Systems

  • Jung, Hyejung;Kim, Hong-Seop;Han, Gil;Park, Jungwook;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.38 no.2
    • /
    • pp.167-174
    • /
    • 2022
  • Pseudomonas amygdali is a hemibiotrophic phytopathogen that causes disease in woody and herbaceous plants. Complete genomes of four P. amygdali pathovars were comparatively analyzed to decipher the impact of genomic diversity on host colonization. The pan-genome indicated that 3,928 core genes are conserved among pathovars, while 504-1,009 are unique to specific pathovars. The unique genome contained many mobile elements and exhibited a functional distribution different from the core genome. Genes involved in O-antigen biosynthesis and antimicrobial peptide resistance were significantly enriched for adaptation to hostile environments. While the type III secretion system was distributed in the core genome, unique genomes revealed a different organization of secretion systems as follows: type I in pv. tabaci, type II in pv. japonicus, type IV in pv. morsprunorum, and type VI in pv. lachrymans. These findings provide genetic insight into the dynamic interactions of the bacteria with plant hosts.

Biocidal Activity of Metal Nanoparticles Synthesized by Fusarium solani against Multidrug-Resistant Bacteria and Mycotoxigenic Fungi

  • Sayed, Manal T. El;El-Sayed, Ashraf S.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.226-236
    • /
    • 2020
  • Antibiotic resistance by pathogenic bacteria and fungi is one of the most serious global public health problems in the 21st century, directly affecting human health and lifestyle. Pseudomonas aeruginosa and Staphylococcus aureus with strong resistance to the common antibiotics have been isolated from Intensive Care Unit patients at Zagazig Hospital. Thus, in this study we assessed the biocidal activity of nanoparticles of silver, copper and zinc synthesized by Fusarium solani KJ 623702 against these multidrug resistant-bacteria. The synthesized Metal Nano-particles (MNPs) were characterized by UV-Vis spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and Zeta potential. The Fourier transform infrared spectroscopy (FTIR) result showed the presence of different functional groups such as carboxyl, amino and thiol, ester and peptide bonds in addition to glycosidic bonds that might stabilize the dispersity of MNPs from aggregation. The antimicrobial potential of MNPs by F. solani against the multidrug-resistant (MDR) P. aeruginosa and S. aureus in addition to the mycotoxigenic Aspergillus awamori, A. fumigatus and F. oxysporum was investigated, based on the visual growth by diameter of inhibition zone. Among the synthesized MNPs, the spherical AgNPs (13.70 nm) displayed significant effect against P. aeruginosa (Zone of Inhibition 22.4 mm and Minimum Inhibitory Concentration 21.33 ㎍/ml), while ZINC oxide Nano-Particles were the most effective against F. oxysporum (ZOI, 18.5 mm and MIC 24.7 ㎍/ml). Transmission Electron Microscope micrographs of AgNP-treated P. aeruginosa showed cracks and pits in the cell wall, with internalization of NPs. Production of pyocyanin pigment was significantly inhibited by AgNPs in a concentration-dependent manner, and at 5-20 ㎍ of AgNPs/ml, the pigment production was reduced by about 15-100%, respectively.

Multi-host Pathogenesis by Pseudomonas aeruginosa and Use of Drosophila melanogaster as a New Model Host

  • Cho You-Hee;Lau Gee;Rahme Laurence
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.40-50
    • /
    • 2002
  • Fruit fly, Drosophila melanogaster has developed efficient immune mechanisms to prevent microbial infection, which are consisted of cellular and humoral responses. During the systemic or local infection, two distinct pathways (Toll and Imd) play major roles in antimicrobial peptide synthesis. The Toll pathway is required to defend Gram-positive bacterial and fungal infections, whereas the Imd pathway is important in Gram-negative bacterial infection. We have shown that the infection of the opportunistic Gram-negative bacterium, Pseudomonas aeruginosa strain PA14 (PA14) into fly dorsal thorax can kill the flies within 48 h ($100\%$ mortality) in our optimized infection condition, suggesting that the PA14 strain can cause disease progress in fly model system. We found that flies carrying a constitutively activated mutant form of the Toll receptor $(Tl^{10b})$ showed increased resistance to P. aeruginosa infection and that flies carrying mutations in the Toll signaling pathway as well as in the Imd signaling pathway was more susceptible to PA14 infection. All these results imply that the Toll pathway might be important in the resistance to this pathogenic Gram-negative bacterial infection.

  • PDF

Resistance Function of Rice Lipid Transfer Protein LTP110

  • Ge, Xiaochun;Chen, Jichao;Li, Ning;Lin, Yi;Sun, Chongrong;Cao, Kaiming
    • BMB Reports
    • /
    • v.36 no.6
    • /
    • pp.603-607
    • /
    • 2003
  • Abstract Plant lipid transfer proteins (LTPs) are a class of proteins whose functions are still unknown. Some are proposed to have antimicrobial activities. To understand whether LTP110, a rice LTP that we previously identified from rice leaves, plays a role in the protection function against some serious rice pathogens, we investigated the antifungal and antibacterial properties of LTP110. A cDNA sequence, encoding the mature peptide of LTP110, was cloned into the Impact-CN prokaryotic expression system. The purified protein was used for an in vitro inhibition test against rice pathogens, Pyricularia oryzae and Xanthomonas oryzae. The results showed that LTP110 inhibited the germination of Pyricularia oryzae spores, and its inhibitory activity decreased in the presence of a divalent cation. This suggests that the antifungal activity is affected by ions in the media; LTP110 only slightly inhibited the growth of Xanthomonas oryzae. However, the addition of LTP110 to cultured Chinese hamster ovarian cells did not retard growth, suggesting that the toxicity of LTP110 is only restricted to some cell types. Its antimicrobial activity is potentially due to interactions between LTP and microbe-specific structures.

Expression of Antimicrobial Peptide (AMP), Moricin Using SUMO Fusion Tag in Escherichia coli (대장균에서 SUMO fusion tag을 이용하여 항균펩타이드인 moricin의 발현)

  • Ahn, Dong-gyu;Park, Sun Ill;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.956-961
    • /
    • 2022
  • Plant Chloroplast have several advantages as an expression platform of biopharmaceuticals over conventional expression platforms such as mammalian cells, yeast and bacteria. First, plants do not serve as a host for mammalian infectious virus and have endotoxin like bacteria which can cause anaphylactic shock. In addition, high copy number of chloroplast genome allows for chloroplast transformants to reach the high level of expression of heterologous genes. Moreover, the integration of transgenes into specific region of chloroplast genomes makes chloroplast transformants unaffected by positional effect which can be frequently observed from nuclear transformants, resulting in loss of transgene expressions. Antimicrobial peptides (AMPs) are a kind of innate immunity which is found from bacteria to humans. Unlike conventional antibiotics, very less dosage of AMPs can have catastrophic effect on bacterial survival. Further, the repeated use of AMPs does not trigger the development of bacterial resistance. Moricin, one of the AMPs, was isolated from Bombyx mori, a silkworm moth. The C-terminal of moricin consists largely of basic amino acids, and the N-terminal has an α-helix structure. Moricin was chosen and expressed in a SUMO/SUMOase without leaving any unwanted amino acids which could potentially affect the anti-bacterial activity of the moricin. The transformation vector used in this study has already been created in this lab for the expression in both prokaryotic systems such as E. coli and chloroplast. The expressed moricin was purified using Ni columns and SUMOase, and the antibacterial activity of the purified moricin was confirmed using an agar diffusion assay.

Anticandidal Activity of the Protein Substance from Coptidis Rhizoma (황련에서 분리된 단백질성분의 항진균효과)

  • Kim Hyunkyung;Lee Jue-Hee;Shim Jin Kie;Han Yongmoon
    • YAKHAK HOEJI
    • /
    • v.49 no.4
    • /
    • pp.323-329
    • /
    • 2005
  • Antimicrobial peptides are evolutionary ancient weapons for animal and plant species to depend themselves against infectious microbes. In the present study, we investigated if an antimicrobial peptide was produced from Coptidis Rhizoma. For the determination, protein substance from the medicinal plant was isolated by various preparations. Among the preparations, the protein portion dissolved in phosphate-buffered saline solution (CRP-DS) that contained the most amount of protein $(90\%)$ resulted in maximal inhibition of Candida albicans which causes local and systemic infections. Analyses by gel-electrophoresis and gel-permeation chromatography showed the CRP-DS formed a single band of approximately 11.8 KDa as molecular size. Antifungal activity of the CRP-DS was almost equivalent to antifungal activity by fluconazole, resulting in MIC (minimal inhibitory concentration) of approximately $50{\mu}g/ml$. The antifungal activity was a dose-dependent. The antifungal activity appeared to be inactivated by heat-treatment and ionic strength, respectively. In a murine model, the CRP-DS enhanced resistance of mice against disseminated candidiasis. The HPLC analysis demonstrated maximum $4\%$ of berberine as residual content in the CRP-DS preparation resulted in no influence on the antifungal activity. In addition, protein portion isolated from Phellodendri Cortex producing the alkaloid component like Coptidis Rhizoma had no such anticandidal effect. These results indicate that the protein substance from Coptidis Rhizoma was responsible for the antifungal activity.

Generation of Newly Discovered Resistance Gene mcr-1 Knockout in Escherichia coli Using the CRISPR/Cas9 System

  • Sun, Lichang;He, Tao;Zhang, Lili;Pang, Maoda;Zhang, Qiaoyan;Zhou, Yan;Bao, Hongduo;Wang, Ran
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1276-1280
    • /
    • 2017
  • The mcr-1 gene is a new "superbug" gene discoverd in China in 2016 that makes bacteria highly resistant to the last-resort class of antibiotics. The mcr-1 gene raised serious concern about its possible global dissemination and spread. Here, we report a potential anti-resistant strategy using the CRISPR/Cas9-mediated approach that can efficiently induce mcr-1 gene knockout in Escherichia coli. Our findings suggested that using the CRISPR/Cas9 system to knock out the resistance gene mcr-1 might be a potential anti-resistant strategy. Bovine myeloid antimicrobial peptide-27 could help deliver plasmid pCas::mcr targeting specific DNA sequences of the mcr-1 gene into microbial populations.