Browse > Article
http://dx.doi.org/10.4014/jmb.1807.07002

Novel Approaches for Efficient Antifungal Drug Action  

Lee, Heejeong (School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University)
Lee, Dong Gun (School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.11, 2018 , pp. 1771-1781 More about this Journal
Abstract
The emergence of multidrug-resistant microorganisms, as well as fungal infectious diseases that further threaten health, especially in immunodeficient populations, is a major global problem. The development of new antifungal agents in clinical trials is inferior to the incidence of drug resistance, and the available antifungal agents are restricted. Their mechanisms aim at certain characteristics of the fungus in order to avoid biological similarities with the host. Synthesis of the cell wall and ergosterol are mainly targeted in clinical use. The need for new approaches to antifungal therapeutic agents or development alternatives has increased. This review explores new perspectives on mechanisms to effectively combat fungal infections and effective antifungal activity. The clinical drug have a common feature that ultimately causes caspase-dependent cell death. The drugs-induced cell death pathway is associated with mitochondrial dysfunction, including mitochondrial membrane depolarization and cytochrome c release. This mechanism of action also reveals antimicrobial peptides, the primary effector molecules of innate systems, to highlight new alternatives. Furthermore, drug combination therapy is suggested as another strategy to combat fungal infection. The proposal for a new approach to antifungal agents is not only important from a basic scientific point of view, but will also assist in the selection of molecules for combination therapy.
Keywords
Antifungal drugs; programmed cell death; antimicrobial peptide; drug combination; polyenes; azoles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T, Frohlich KU. 2004. Apoptosis in yeast. Curr. Opin. Microbiol. 7: 655-660.   DOI
2 Katragkou A, Alexander EL, Eoh H, Raheem SK, Roilides E, Walsh TJ. 2016. Effects of fluconazole on the metabolomic profile of Candida albicans. J. Antimicrob. Chemother. 71: 635-640.   DOI
3 Mahl CD, Behling CS, Hackenhaar FS, de Carvalho e Silva MN, Putti J, Salomon TB, et al. 2015. Induction of ROS generation by fluconazole in Candida glabrata: activation of antioxidant enzymes and oxidative DNA damage. Diagn. Microbiol. Infect. Dis. 82: 203-208.   DOI
4 Lee W, Lee DG. 2018. A novel mechanism of fluconazole: fungicidal activity through dose-dependent apoptotic responses in Candida albicans. Microbiology 164: 194-204.   DOI
5 Park C, Lee DG. 2009. Fungicidal effect of antimicrobial peptide arenicin-1. Biochim. Biophys. Acta 1788: 1790-1796.   DOI
6 Yun J, Lee DG. 2 016. Cecropin A-induced a poptosis is regulated by ion balance and glutathione antioxidant system in Candida albicans. IUBMB Life 68: 652-662.   DOI
7 Shirazi F, Kontoyiannis DP. 2013. The calcineurin pathway inhibitor tacrolimus enhances the in vitro activity of azoles against Mucorales via apoptosis. Eukaryot Cell. 12: 1225-1234.   DOI
8 Murgia M, Rizzuto R. 2015. Molecular diversity and pleiotropic role of the mitochondrial calcium uniporter. Cell Calcium 58: 11-17.   DOI
9 Carmona-Gutierrez D, Eisenberg T, Buttner S, Meisinger C, Kroemer G, Madeo F. 2010. Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ. 17: 763-773.   DOI
10 Pereira C, Camougrand N, Manon S, Sousa MJ, Corte-Real M. 2007. ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol. Microbiol. 66: 571-582.   DOI
11 Eisenberg T, Buttner S, Kroemer G, Madeo F. 2007. The mitochondrial pathway in yeast apoptosis. Apoptosis 12: 1011-1023.   DOI
12 Mazzoni C, Falcone C. 2008. Caspase-dependent apoptosis in yeast. Biochim. Biophys. Acta 1783: 1320-1327.   DOI
13 Pham CD, Iqbal N, Bolden CB, Kuykendall RJ, Harrison LH, Farley MM, et al. 2014. Role of FKS mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance. Antimicrob. Agents Chemother. 58: 4690-4696.   DOI
14 Hwang B, Hwang JS, Lee J, Kim JK, Kim SR, Kim Y, et al. 2011. Induction of yeast apoptosis by an antimicrobial peptide, Papiliocin. Biochem. Biophys. Res. Commun. 408: 89-93.   DOI
15 Wang G. 2008. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J. Biol. Chem. 283: 32637-32643.   DOI
16 Tsai PW, Cheng YL, Hsieh WP, Lan CY. 2014. Responses of Candida albicans to the human antimicrobial peptide LL-37. J. Microbiol. 52: 581-589.   DOI
17 Lee J, Lee DG. 2014. Melittin triggers apoptosis in Candida albicans through the reactive oxygen species-mediated mitochondria/caspase-dependent pathway. FEMS Microbiol. Lett. 355: 36-42.   DOI
18 Kim JK, Lee E, Shin S, Jeong KW, Lee JY, Bae SY, et al. 2011. Structure and function of papiliocin with antimicrobial and anti-inflammatory activities isolated from the swallowtail butterfly, Papilio xuthus. J. Biol. Chem. 286: 41296-41311.   DOI
19 Lee J, Hwang JS, Hwang B, Kim JK, Kim SR, Kim Y, et al. 2010. Influence of the papiliocin peptide derived from Papilio xuthus on the perturbation of fungal cell membranes. FEMS Microbiol. Lett. 311: 70-75.   DOI
20 Choi H, Hwang JS, Lee DG. 2014. Identification of a novel antimicrobial peptide, scolopendin 1, derived from centipede Scolopendra subspinipes mutilans and its antifungal mechanism. Insect. Mol. Biol. 23: 788-799.   DOI
21 Shirazi F, Kontoyiannis DP. 2015. Micafungin triggers caspase-dependent apoptosis in Candida albicans and Candida parapsilosis biofilms, including caspofungin nonsusceptible isolates. Virulence 6: 385-394.   DOI
22 Fekkar A, Meyer I, Brossas JY, Dannaoui E, Palous M, Uzunov M, et al. 2013. Rapid emergence of echinocandin resistance during Candida kefyr fungemia treatment with caspofungin. Antimicrob. Agents Chemother. 57: 2380-2382.   DOI
23 Costa V, Moradas-Ferreira P. 2001. Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol. Aspects Med. 22: 217-246.   DOI
24 Ludovico P, Madeo F, Silva M. 2005. Yeast programmed cell death: an intricate puzzle. IUBMB Life 57: 129-135.   DOI
25 Feldmesser M, Kress Y, Mednick A, Casadevall A. 2000. The effect of the echinocandin analogue caspofungin on cell wall glucan synthesis by Cryptococcus neoformans. J. Infect. Dis. 182: 1791-1795.   DOI
26 Hao B, Cheng S, Clancy CJ, Nguyen MH. 2013. Caspofungin kills Candida albicans by causing both cellular apoptosis and necrosis. Antimicrob. Agents Chemother. 57: 326-332.   DOI
27 Hagiwara D, Watanabe A, Kamei K, Goldman GH. 2016. Epidemiological and genomic landscape of azole resistance mechanisms in Aspergillus fungi. Front Microbiol. 7: 1382.
28 Lakshmaiah Narayana J, Chen JY. 2015. Antimicrobial peptides: possible anti-infective agents. Peptides 72: 88-94.   DOI
29 Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. 2014. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med. 5: a019752.
30 Cui J, Ren B, Tong Y, Dai H, Zhang L. 2015. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence 6: 362-371.   DOI
31 Kanafani ZA, Perfect JR. 2008. Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin. Infect. Dis. 46: 120-128.   DOI
32 Shields RK, Nguyen MH, Press EG, Cumbie R, Driscoll E, Pasculle AW, et al. 2015. Rate of FKS mutations among consecutive Candida isolates causing bloodstream infection. Antimicrob. Agents Chemother. 59: 7465-7470.   DOI
33 Roy RN, Lomakin IB, Gagnon MG, Steitz TA. 2015. The mechanism of inhibition of protein synthesis by the prolinerich peptide oncocin. Nat. Struct. Mol. Biol. 22: 466-469.   DOI
34 Lee H, Hwang JS, Lee J, Kim JI, Lee DG. 2015. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Biochim. Biophys. Acta 1848:634-642.   DOI
35 Lee H, Hwang JS, Lee DG. 2016. Scolopendin 2 leads to cellular stress response in Candida albicans. Apoptosis 21:856-865.   DOI
36 Shivange G, Monisha M, Nigam R, Kodipelli N, Anindya R. 2016. RecA stimulates AlkB-mediated direct repair of DNA adducts. Nucleic Acids Res. 44: 8754-8763.   DOI
37 Baev D, Li XS, Dong J, Keng P, Edgerton M. 2002. Human salivary histatin 5 causes disordered volume regulation and cell cycle arrest in Candida albicans. Infect. Immun. 70: 4777-4784.   DOI
38 Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections. Sci. Transl. Med. 4: 165rv113.
39 Perrone GG, Tan SX, Dawes IW. 2008. Reactive oxygen species and yeast apoptosis. Biochim. Biophys. Acta 1783: 1354-1368.   DOI
40 Liu S, Hou Y, Chen X, Gao Y, Li H, Sun S. 2014. Combination of fluconazole with non-antifungal agents: a promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int. J. Antimicrob. Agents. 43: 395-402.   DOI
41 Shor E, Chauhan N. 2015. A case for two-component signaling systems as antifungal drug targets. PLoS Pathog. 11: e1004632.   DOI
42 Pierce CG, Srinivasan A, Ramasubramanian AK, Lopez- Ribot JL. 2015. From biology to drug development: new approaches to combat the threat of fungal biofilms. Microbiol. Spectr. 3(3).
43 Vandenbosch D, Braeckmans K, Nelis HJ, Coenye T. 2010. Fungicidal activity of miconazole against Candida spp. biofilms. J. Antimicrob. Chemother. 65: 694-700.   DOI
44 Serhan G, Stack CM, Perrone GG, Morton CO. 2014. The polyene antifungals, amphotericin B and nystatin, cause cell death in Saccharomyces cerevisiae by a distinct mechanism to amphibian-derived antimicrobial peptides. Ann. Clin. Microbiol. Antimicrob. 13: 18.   DOI
45 Semis R, Kagan S, Berdicevsky I, Polacheck I, Segal E. 2013. Mechanism of activity and toxicity of Nystatin-Intralipid. Med. Mycol. 51: 422-431.   DOI
46 Bendaha H, Yu L, Touzani R, Souane R, Giaever G, Nislow C, et al. 2011. New azole antifungal agents with novel modes of action: synthesis and biological studies of new tridentate ligands based on pyrazole and triazole. Eur. J. Med. Chem. 46: 4117-4124.   DOI
47 Biswas C, Zuo X, Chen SC, Schibeci SD, Forwood JK, Jolliffe KA, et al. 2014. Functional disruption of yeast metacaspase, Mca1, leads to miltefosine resistance and inability to mediate miltefosine-induced apoptotic effects. Fungal Genet. Biol. 67: 71-81.   DOI
48 Juvvadi PR, Lee SC, Heitman J, Steinbach WJ. 2017. Calcineurin in fungal virulence and drug resistance: Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence 8: 186-197.   DOI
49 Bassetti M, Garnacho-Montero J, Calandra T, Kullberg B, Dimopoulos G, Azoulay E, et al. 2017. Intensive care medicine research agenda on invasive fungal infection in critically ill patients. Intensive Care Med. 43: 1225-1238.   DOI
50 Fernandez J, Acevedo J, Wiest R, Gustot T, Amoros A, Deulofeu C, et al. 2017. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis. Gut. 67(10): 1870-1880.   DOI
51 Nett JE, Andes DR. 2016. Antifungal agents: spectrum of activity, pharmacology, and clinical indications. Infect. Dis. Clin. North Am. 30: 51-83.   DOI
52 Kuipers ME, de Vries HG, Eikelboom MC, Meijer DK, Swart PJ. 1999. Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob. Agents Chemother. 43: 2635-2641.   DOI
53 Wakabayashi H, Abe S, Okutomi T, Tansho S, Kawase K, Yamaguchi H. 1996. Cooperative anti-Candida effects of lactoferrin or its peptides in combination with azole antifungal agents. Microbiol. Immunol. 40: 821-825.   DOI
54 Vriens K, Cools TL, Harvey PJ, Craik DJ, Spincemaille P, Cassiman D, et al. 2015. Synergistic activity of the plant defensin hsafp1 and caspofungin against Candida albicans biofilms and planktonic cultures. PLoS One 10: e0132701.   DOI
55 Campoy S, Adrio JL. 2017. Antifungals. Biochem. Pharmacol. 133: 86-96.   DOI
56 Perfect JR. 2017. The antifungal pipeline: a reality check. Nat. Rev. Drug Discov. 16: 603-616.   DOI
57 Taveira GB, Carvalho AO, Rodrigues R, Trindade FG, Da Cunha M, Gomes VM. 2016. Thionin-like peptide from Capsicum annuum fruits: mechanism of action and synergism with fluconazole against Candida species. BMC Microbiol. 16: 12.   DOI
58 Vriens K, Cools TL, Harvey PJ, Craik DJ, Braem A, Vleugels J, et al. 2016. The radish defensins RsAFP1 and RsAFP2 act synergistically with caspofungin against Candida albicans biofilms. Peptides 75: 71-79.   DOI
59 Aerts AM, Carmona-Gutierrez D, Lefevre S, Govaert G, Francois IE, Madeo F, et al. 2009. The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett. 583: 2513-2516.   DOI
60 Tabbene O, Azaiez S, Di Grazia A, Karkouch I, Ben Slimene I, Elkahoui S, et al. 2016. Bacillomycin D and its combination with amphotericin B: promising antifungal compounds with powerful antibiofilm activity and wound-healing potency. J. Appl. Microbiol. 120: 289-300.   DOI
61 Leger T, Garcia C, Ounissi M, Lelandais G, Camadro JM. 2015. The metacaspase (Mca1p) has a dual role in farnesolinduced apoptosis in Candida albicans. Mol. Cell Proteomics 14: 93-108.   DOI
62 Belenky P, Camacho D, Collins JJ. 2013. Fungicidal drugs induce a common oxidative-damage cellular death pathway. Cell Rep. 3: 350-358.   DOI
63 Shah AH, Singh A, Dhamgaye S, Chauhan N, Vandeputte P, Suneetha KJ, et al. 2014. Novel role of a family of major facilitator transporters in biofilm development and virulence of Candida albicans. Biochem. J. 460: 223-235.   DOI
64 Parente-Rocha JA, Bailao AM, Amaral AC, Taborda CP, Paccez JD, Borges CL, et al. 2017. Antifungal resistance, metabolic routes as drug targets, and new antifungal agents: an overview about endemic dimorphic fungi. Mediators Inflamm. 2017: 9870679.
65 Fujita K, Tatsumi M, Ogita A, Kubo I, Tanaka T. 2014. Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation in Aspergillus fumigatus and Saccharomyces cerevisiae. FEBS J. 281: 1304-1313.   DOI
66 Fuentefria AM, Pippi B, Dalla Lana DF, Donato KK, de Andrade SF. 2018. Antifungals discovery: an insight into new strategies to combat antifungal resistance. Lett. Appl. Microbiol. 66: 2-13.   DOI
67 Teixeira-Santos R, Ricardo E, Guerreiro SG, Costa-de- Oliveira S, Rodrigues AG, Pina-Vaz C. 2015. New insights regarding yeast survival following exposure to liposomal amphotericin B. Antimicrob. Agents Chemother. 59: 6181-6187.   DOI
68 Lee J, L ee D, C hoi H, K im HH, K im H , Hwang JS, et al. 2014. Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle. BMB Rep. 47: 625-630.   DOI
69 Kyrylkova K, Kyryachenko S, Leid M, Kioussi C. 2012. Detection of apoptosis by TUNEL assay. Methods Mol. Biol. 887: 41-47.
70 Spitzer M, Robbins N, Wright GD. 2017. Combinatorial strategies for combating invasive fungal infections. Virulence 8: 169-185.   DOI
71 Lee J, Hwang J S, Hwang I S, Cho J , Lee E, K im Y , et al. 2012. Coprisin-induced antifungal effects in Candida albicans correlate with apoptotic mechanisms. Free Radic. Biol. Med. 52: 2302-2311.   DOI
72 Andra J, Jakovkin I, Grotzinger J, Hecht O, Krasnosdembskaya AD, Goldmann T, et al. 2008. Structure and mode of action of the antimicrobial peptide arenicin. Biochem. J. 410: 113-122.   DOI
73 Cho J, Lee DG. 2011. The antimicrobial peptide arenicin-1 promotes generation of reactive oxygen species and induction of apoptosis. Biochim. Biophys. Acta 1810: 1246-1251.   DOI
74 Bachmann SP, Ramage G, VandeWalle K, Patterson TF, Wickes BL, Lopez-Ribot JL. 2003. Antifungal combinations against Candida albicans biofilms in vitro. Antimicrob. Agents Chemother. 47: 3657-3659.   DOI
75 Tobudic S, Kratzer C, Lassnigg A, Graninger W, Presterl E. 2010. In vitro activity of antifungal combinations against Candida albicans biofilms. J. Antimicrob. Chemother. 65: 271-274.   DOI
76 Liao Y, Yang S, Cong L, Lu X, Ao J, Yang R. 2014. In vitro activities of antifungal combinations against biofilms and planktonic forms of clinical Trichosporon asahii isolates. Antimicrob. Agents Chemother. 58: 7615-7616.   DOI
77 Shuford JA, Piper KE, Steckelberg JM, Patel R. 2007. In vitro biofilm characterization and activity of antifungal agents alone and in combination against sessile and planktonic clinical Candida albicans isolates. Diagn. Microbiol. Infect. Dis. 57: 277-281.   DOI
78 Zeng R, L i M, C hen Q, W ang L, Z han P, W ang C, et al. 2014. In vitro analyses of mild heat stress in combination with antifungal agents against Aspergillus fumigatus biofilm. Antimicrob. Agents Chemother. 58: 1443-1450.   DOI
79 Garbati MA, Alasmari FA, Al-Tannir MA, Tleyjeh IM. 2012. The role of combination antifungal therapy in the treatment of invasive aspergillosis: a systematic review. Int. J. Infect. Dis. 16: e76-81.
80 Cools TL, Struyfs C, Cammue BP, Thevissen K. 2017. Antifungal plant defensins: increased insight in their mode of action as a basis for their use to combat fungal infections. Future Microbiol. 12: 441-454.   DOI
81 Almeida B, Silva A, Mesquita A, Sampaio-Marques B, Rodrigues F, Ludovico P. 2008. Drug-induced apoptosis in yeast. Biochim. Biophys. Acta 1783: 1436-1448.   DOI
82 Hayes BM, Anderson MA, Traven A, van der Weerden NL, Bleackley MR. 2014. Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins. Cell Mol. Life Sci. 71: 2651-2666.   DOI
83 Grudzinski W, Sagan J, Welc R, Luchowski R, Gruszecki WI. 2016. Molecular organization, localization and orientation of antifungal antibiotic amphotericin B in a single lipid bilayer. Sci. Rep. 6: 32780.   DOI
84 Chudzik B, Koselski M, Czurylo A, Trebacz K, Gagos M. 2015. A new look at the antibiotic amphotericin B effect on Candida albicans plasma membrane permeability and cell viability functions. Eur. Biophys. J. 44: 77-90.   DOI
85 Al-Dhaheri RS, Douglas LJ. 2010. Apoptosis in Candida biofilms exposed to amphotericin B. J. Med. Microbiol. 59: 149-157.   DOI
86 Phillips AJ, Sudbery I, Ramsdale M. 2003. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. USA 100: 14327-14332.   DOI
87 Guirao-Abad JP, Sanchez-Fresneda R, Alburquerque B, Hernandez JA, Arguelles JC. 2017. ROS formation is a differential contributory factor to the fungicidal action of Amphotericin B and Micafungin in Candida albicans. Int. J. Med. Microbiol. 307: 241-248.   DOI
88 Folk A, Balta C, Herman H, Ivan A, Boldura OM, Paiusan L, et al. 2017. Flucytosine and amphotericin B coadministration induces dose-related renal injury. Dose Response 15: 1559325817703461.
89 Spanakis EK, Aperis G, Mylonakis E. 2006. New agents for the treatment of fungal infections: clinical efficacy and gaps in coverage. Clin. Infect. Dis. 43: 1060-1068.   DOI
90 Mousavi SA, Robson GD. 2004. Oxidative and amphotericin B-mediated cell death in the opportunistic pathogen Aspergillus fumigatus is associated with an apoptotic-like phenotype. Microbiology 150: 1937-1945.   DOI
91 van der Weerden NL, Bleackley MR, Anderson MA. 2013. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol. Life Sci. 70: 3545-3570.   DOI
92 Mardirossian M, Grzela R, Giglione C, Meinnel T, Gennaro R, Mergaert P, et al. 2014. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem. Biol. 21: 1639-1647.   DOI
93 Libardo MDJ, Wang TY, Pellois JP, Angeles-Boza AM. 2017. How does membrane oxidation affect cell delivery and cell killing? Trends Biotechnol. 35: 686-690.   DOI
94 Wang S, Zeng X, Yang Q, Qiao S. 2016. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int. J. Mol. Sci. 17.
95 Jensen RH, Johansen HK, Arendrup MC. 2013. Stepwise development of a homozygous S80P substitution in Fks1p, conferring echinocandin resistance in Candida tropicalis. Antimicrob. Agents Chemother. 57: 614-617.   DOI
96 Lee KK, Maccallum DM, Jacobsen MD, Walker LA, Odds FC, Gow NA, et al. 2012. Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrob. Agents Chemother. 56: 208-217.   DOI
97 Vincent BM, Lancaster AK, Scherz-Shouval R, Whitesell L, Lindquist S. 2013. Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS Biol. 11: e1001692.   DOI
98 Shlezinger N, Goldfinger N, Sharon A. 2012. Apoptotic-like programed cell death in fungi: the benefits in filamentous species. Front. Oncol. 2: 97.
99 Allen D, Wilson D, Drew R, Perfect J. 2015. Azole antifungals: 35 years of invasive fungal infection management. Exp. Rev. Anti Infect. Ther. 13: 787-798.   DOI
100 Prasad R, Shah AH, Rawal MK. 2016. Antifungals: mechanism of action and drug resistance. Adv. Exp. Med. Biol. 892: 327-349.
101 Delattin N, Cammue BP, Thevissen K. 2014. Reactive oxygen species-inducing antifungal agents and their activity against fungal biofilms. Future Med. Chem. 6: 77-90.   DOI
102 Rautenbach M, Troskie AM, Vosloo JA. 2016. Antifungal peptides: To be or not to be membrane active. Biochimie 130: 132-145.   DOI
103 de Oliveira Pereira F, Mendes JM, de Oliveira Lima E. 2013. Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum. Med. Mycol. 51: 507-513.   DOI
104 Portet T, Camps i Febrer F, Escoffre JM, Favard C, Rols MP, Dean DS. 2009. Visualization of membrane loss during the shrinkage of giant vesicles under electropulsation. Biophys. J. 96: 4109-4121.   DOI
105 Lee W, Lee DG. 2018. Reactive oxygen species modulate itraconazole-induced apoptosis via mitochondrial disruption in Candida albicans. Free Radic. Res. 52: 39-50.   DOI