Browse > Article
http://dx.doi.org/10.5423/PPJ.NT.11.2021.0175

Comparative Analyses of Four Complete Genomes in Pseudomonas amygdali Revealed Differential Adaptation to Hostile Environments and Secretion Systems  

Jung, Hyejung (Department of Integrated Biological Science, Pusan National University)
Kim, Hong-Seop (Korea Seed & Variety Service)
Han, Gil (Department of Integrated Biological Science, Pusan National University)
Park, Jungwook (Department of Integrated Biological Science, Pusan National University)
Seo, Young-Su (Department of Integrated Biological Science, Pusan National University)
Publication Information
The Plant Pathology Journal / v.38, no.2, 2022 , pp. 167-174 More about this Journal
Abstract
Pseudomonas amygdali is a hemibiotrophic phytopathogen that causes disease in woody and herbaceous plants. Complete genomes of four P. amygdali pathovars were comparatively analyzed to decipher the impact of genomic diversity on host colonization. The pan-genome indicated that 3,928 core genes are conserved among pathovars, while 504-1,009 are unique to specific pathovars. The unique genome contained many mobile elements and exhibited a functional distribution different from the core genome. Genes involved in O-antigen biosynthesis and antimicrobial peptide resistance were significantly enriched for adaptation to hostile environments. While the type III secretion system was distributed in the core genome, unique genomes revealed a different organization of secretion systems as follows: type I in pv. tabaci, type II in pv. japonicus, type IV in pv. morsprunorum, and type VI in pv. lachrymans. These findings provide genetic insight into the dynamic interactions of the bacteria with plant hosts.
Keywords
bacterial secretion system; pan-genome; pathovar; Pseudomonas amygdali;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lerouge, I. and Vanderleyden, J. 2002. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol. Rev. 26:17-47.   DOI
2 Meng, X.-L., Xie, X.-W., Shi, Y.-X., Chai, A.-L., Ma, Z.-H. and Li, B.-J. 2017. Evaluation of a loop-mediated isothermal amplification assay based on hrpZ gene for rapid detection and identification of Pseudomonas syringae pv. lachrymans in cucumber leaves. J. Appl. Microbiol. 122:441-449.   DOI
3 Rapicavoli, J. N., Blanco-Ulate, B., Muszynski, A., Figueroa- Balderas, R., Morales-Cruz, A., Azadi, P., Dobruchowska, J. M., Castro, C., Cantu, D. and Roper, M. C. 2018b. Lipopolysaccharide O-antigen delays plant innate immune recognition of Xylella fastidiosa. Nat. Commun. 9:390.   DOI
4 Tettelin, H., Riley, D., Cattuto, C. and Medini, D. 2008. Comparative genomics: the bacterial pan-genome. Curr. Opin. Microbiol. 11:472-477.   DOI
5 Cardan, L., Shafik, H., Belouin, S., Broch, R., Grimont, F. and Grimont, P. 1999. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int. J. Syst. Bacteriol. 49:469-478.   DOI
6 Chang, J. H., Urbach, J. M., Law, T. F., Arnold, L. W., Hu, A., Gombar, S., Grant, S. R., Ausubel, F. M. and Dangl, J. L. 2005. A high-throughput, near-saturating screen for type III effector genes from Pseudomonas syringae. Proc. Natl. Acad. Sci. U. S. A. 102:2549-2554.   DOI
7 Hulin, M. T., Mansfield, J. W., Brain, P., Xu, X., Jackson, R. W. and Harrison, R. J. 2018. Characterization of the pathogenicity of strains of Pseudomonas syringae towards cherry and plum. Plant Pathol. 67:1177-1193.   DOI
8 Lawley, T. D., Klimke, W. A., Gubbins, M. J. and Frost, L. S. 2003. F factor conjugation is a true type IV secretion system. FEMS Microbiol. Lett. 224:1-15.   DOI
9 Lukjancenko, O. and Ussery, D. W. 2014. Vibrio chromosomespecific families. Front. Microbiol. 5:73.   DOI
10 Oliveira, P. H., Touchon, M. and Rocha, E. P. C. 2014. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res. 42:10618-10631.   DOI
11 Taguchi, F. and Ichinose, Y. 2011. Role of type IV pili in virulence of Pseudomonas syringae pv. tabaci 6605: correlation of motility, multidrug resistance, and HR-inducing activity on a nonhost plant. Mol. Plant.-Microbe. Interact. 24:1001-1011.   DOI
12 Goo, E., Kang, Y., Kim, H. and Hwang, I. 2010. Proteomic analysis of quorum sensing-dependent proteins in Burkholderia glumae. J. Proteome Res. 9:3184-3199.   DOI
13 Bender, C. L., Alarcon-Chaidez, F. and Gross, D. C. 1999. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 63:266-292.   DOI
14 Bocsanczy, A. M., Huguet-Tapia, J. C. and Norman, D. J. 2017. Comparative genomics of Ralstonia solanacearum identifies candidate genes associated with cool virulence. Front. Plant Sci. 8:1565.   DOI
15 Cunnac, S., Lindeberg, M. and Collmer, A. 2009. Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr. Opin. Microbiol. 12:53-60.   DOI
16 Wu, H.-Y., Chung, P.-C., Shih, H.-W., Wen, S.-R. and Lai, E.-M. 2008. Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J. Bacteriol. 190:2841-2850.   DOI
17 Yun, H. Y. and Kim, H. 2021. First report of Pseudomonas amygdali causing bacterial leaf spot of Mallotus japonicus in South Korea. For. Pathol. 51:e12707.
18 Dudnik, A. and Dudler, R. 2014. Genomics-based exploration of virulence determinants and host-specific adaptations of Pseudomonas syringae strains isolated from grasses. Pathogens 3:121-148.   DOI
19 Guttman, D. S., Vinatzer, B. A., Sarkar, S. F., Ranall, M. V., Kettler, G. and Greenberg, J. T. 2002. A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science 295:1722-1726.   DOI
20 Hersemann, L., Wibberg, D., Blom, J., Goesmann, A., Widmer, F., Vorholter, F.-J. and Kolliker, R. 2017. Comparative genomics of host adaptive traits in Xanthomonas translucens pv. graminis. BMC Genomics 18:35.   DOI
21 Rapicavoli, J., Ingel, B., Blanco-Ulate, B., Cantu, D. and Roper, C. 2018a. Xylella fastidiosa: an examination of a re-emerging plant pathogen. Mol. Plant Pathol. 19:786-800.   DOI
22 Yuan, Z.-C., Liu, P., Saenkham, P., Kerr, K. and Nester, E. W. 2008. Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acidmediated signaling involved in Agrobacterium-plant interactions. J. Bacteriol. 190:494-507.   DOI
23 Zhang, Y., Fan, Q. and Loria, R. 2016. A re-evaluation of the taxonomy of phytopathogenic genera Dickeya and Pectobacterium using whole-genome sequencing data. Syst. Appl. Microbiol. 39:252-259.   DOI
24 Yu, J., Penaloza-Vazquez, A., Chakrabarty, A. M. and Bender, C. L. 1999. Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol. Microbiol. 33:712-720.   DOI
25 Kapchina, V., Milanov, G., Zankov, A., Stefanov, D., Slavov, S., Goltsev, V. and Batchvarova, R. 2014. The changes in some photosynthetic characteristics of transgenic tobacco plants, resistant to bacteria Pseudomonas syringae pv. tabaci. Biotechnol. Biotechnol. Equip. 18:74-84.
26 Koczan, J. M., Lenneman, B. R., McGrath, M. J. and Sundin, G. W. 2011. Cell surface attachment structures contribute to biofilm formation and xylem colonization by Erwinia amylovora. Appl. Environ. Microbiol. 77:7031-7039.   DOI
27 Mardis, E., McPherson, J., Martienssen, R., Wilson, R. K. and Richard McCombie, W. 2002. What is finished, and why does it matter. Genome Res. 12:669-671.   DOI
28 Pandin, C., Caroff, M. and Condemine, G. 2016. Antimicrobial peptide resistance genes in the plant pathogen Dickeya dadantii. Appl. Environ. Microbiol. 82:6423-6430.   DOI
29 Satomi, Y., Arisawa, M., Nishino, H. and Iwashima, A. 1994. Antitumor-promoting activity of mallotojaponin, a major constituent of pericarps of Mallotus japonicus. Oncology 51:215-219.   DOI
30 Schmidtchen, A., Frick, I.-M., Andersson, E., Tapper, H. and Bjorck, L. 2002. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 46:157-168.   DOI
31 Taguchi, F., Suzuki, T., Inagaki, Y., Toyoda, K., Shiraishi, T. and Ichinose, Y. 2010. The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. J. Bacteriol. 192:117-126.   DOI
32 Li, L., Yuan, L., Shi, Y., Xie, X., Chai, A., Wang, Q. and Li, B. 2019. Comparative genomic analysis of Pseudomonas amygdali pv. lachrymans NM002: insights into its potential virulence genes and putative invasion determinants. Genomics 111:1493-1503.   DOI