• Title/Summary/Keyword: Antifungal substance

Search Result 108, Processing Time 0.031 seconds

Food application of enzymes derived from microorganisms degrading chitin and chitosan (키틴과 키토산 분해 미생물 유래 효소의 식품에의 이용)

  • Park, Jae Kweon
    • Food Science and Industry
    • /
    • v.53 no.1
    • /
    • pp.43-55
    • /
    • 2020
  • Most reports demonstrated the substrate specificity-based kinetic properties of chitin or chitosan degrading enzymes. However, there is virtually less information on the high quality and quantity production of chitin or chitosan hydrolysates having a larger than (GlcN)7 from the hydrolysis of high molecular weight chitosan using specific enzymes and their biological activity. Therefore, the production of such molecules and the discovery of such enzyme sources are very important. Fortunately, the author has established a mass production method of chitosan hydrolysates (GlcN)n, n=2-13 that have been characterized as a potent antioxidant substance, as well as antifungal and antibacterial activities against Penicillium species and highly selective pathogenic bacteria. In addition, preclinical studies using (GlcN)n, n=5-25 demonstrated that these molecules played a very important role in maintaining biometric balance. Collectively, it is implicated that the application of these mixed substances to foods with significant biological activity is very encouraging.

Antifungal Activity of Decursinol Angelate Isolated from Angelica gigas Roots Against Puccinia recondita (당귀로부터 분리한 decursinol angelate의 밀 붉은녹병에 대한 항균활성)

  • Yoon, Mi-Young;Kim, Young-Sup;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Cha, Byeong-Jin;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • Rust causes significant losses in the yield and quality of various crops. The development of new effective and environmentally benign agents against the pathogen is of great interest. In the course of searching a natural antifungal compound from medicinal plants, we found that the methanol extract of Angelica gigas roots had a potent control efficacy against wheat leaf rust (WLR) caused by Puccinia recondita. The antifungal substance was isolated from the methanol extract by silica gel column chromatography, alumina column chromatography and $C_{18}$ preparative HPLC. It was identified as decursinol angelate by EI-MS and $^1H$-NMR data. In in vivo test, decursinol angelate effectively suppressed the development of WLR and red pepper anthracnose (RPA) among the 6 plant diseases tested. In addition, the wettable powder-type formulation of ethyl acetate extract of A. gigas roots significantly suppressed the development of WLR. The crude extract containing decursinol angelate and the chemical appear to be a potential candidate for control of WLR. In addition, this is the first report on the in vivo antifungal activity of decursinol angelate against WLR as well as RPA.

The Optimal Culture Conditions and Antifungal Activity of Culture Extract from Oudemansiella mucida (끈적긴뿌리버섯(Oudemansiella mucida)의 최적배양조건 및 배양 추출액의 항균작용에 관한 연구)

  • Choi, Mi-Ryue;Cho, Hae-Jin;Lee, Jae-Seong;Kim, Hye-Young;Lee, Tae-Soo
    • The Korean Journal of Mycology
    • /
    • v.39 no.2
    • /
    • pp.91-98
    • /
    • 2011
  • Oudemansiella mucida, an edible and medicinal mushrooms belonging to Tricholomataceae of Basidiomycota, has been known to produce antifungal substances to inhibit the mycelial growth and spore germination of the plant pathogenic fungi. To produce good amount of antifungal substances from culture media, the optimal culture conditions of O. mucida were investigated. The most favorable conditions for the mycelial growth were $25^{\circ}C$ and pH 5 in potato dextrose agar. The most favorable carbon and nitrogen sources promoting mycelial growth were maltose and calcium nitrate, respectively. The optimum C/N ratio was about 20 : 1 in case that 3% glucose was supplemented to the basal medium as a carbon source. The optimal mycelial growth of O. mucida was found in the Hennerberg medium. The crude extract from submerged culture of potato dextrose broth exhibited inhibition of mycelial growth of Colletotrichum acutatum, Botrytis cinerea and Pyricularia oryzae but, fungicidal activity is not good enough to compared with commercially available fungicides tested. Therefore, the antifungal substances extracted from submerged culture of O. mucida might have a potential to be used for biocontrol agent of fungal diseases of plants.

Antifungal Activity of Bacillus Subtilis HK2 against Trichothecium Roseum Causing Pink Rot of Melon and White Stain Symptom on Grape (멜론 분홍빛썩음병과 포도 흰얼룩병의 원인균인 Trichothecium Roseum에 대한 Bacillus Subtilis HK2의 항균활성)

  • Oh, Soh-Young;Lee, En-Young;Nam, Ki-Woong;Yoon, Deok-Hoon
    • Korean Journal of Plant Resources
    • /
    • v.29 no.1
    • /
    • pp.39-45
    • /
    • 2016
  • Pink Rot on melon and White Stain Symptom on grape are caused by Trichothecium roseum, one of the most important diseases of grape and melon. These diseases have been occurred in national-wide in Korea and causes irreversible damage on the grape and the melon at harvest season. This research presents the evaluation of the capacity of Bacillus subtillis HK2 to protect both melon and grape against T. reseum and establishes its role as a biocontrol agent. In this study, we isolated a Bacillus strain HK2 from rhizosphere soil, identified it as Bacillus subtillis by 16S rRNA analysis and demonstrated its antifungal activity against T. roseum. Under I-plate assay it was observed that the effect of hyphal growth inhibition was not due to production of volatile compounds. The optimum culture condition of HK2 was found at 30℃ and initial pH of 7.0. Application of HK2 culture suspension reduced 90.2% of white stain symptom on grape as compared to control, resulting in greater protection to grape against T. roseum infestation. Butanol extract of HK2 culture purified using flash column chromatography. The antifungal material was a polar substance as it showed antifungal activity in polar elute. Therefore, our results indicated a clear potential of B. subtilis HK2 to be used for biocontrol of Pink rot in melon and white stain symptom on grape caused by T. roseum.

Antifungal and carboxylesterase-producing bacteria applied into corn silage still affected the fermented total mixed ration

  • Dimas Hand Vidya Paradhipta;Myeong Ji Seo;Seung Min Jeong;Young Ho Joo;Seong Shin Lee;Pil Nam Seong;Hyuk Jun Lee;Sam Churl Kim
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.720-730
    • /
    • 2023
  • Objective: This study investigated the effects of corn silage as a source of microbial inoculant containing antifungal and carboxylesterase-producing bacteria on fermentation, aerobic stability, and nutrient digestibility of fermented total mixed ration (FTMR) with different energy levels. Methods: Corn silage was used as a bacterial source by ensiling for 72 d with an inoculant mixture of Lactobacillus brevis 5M2 and L. buchneri 6M1 at a 1:1 ratio. The corn silage without or with inoculant (CON vs MIX) was mixed with the other ingredients to formulate for low and high energy diets (LOW vs HIGH) for Hanwoo steers. All diets were ensiled into 20 L mini silo (5 kg) for 40 d in quadruplicate. Results: The MIX diets had lower (p<0.05) acid detergent fiber with higher (p<0.05) in vitro digestibilities of dry matter and neutral detergent fiber compared to the CON diets. In terms of fermentation characteristics, the MIX diets had higher (p<0.05) acetate than the CON diets. The MIX diets had extended (p<0.05) lactic acid bacteria growth at 4 to 7 d of aerobic exposure and showed lower (p<0.05) yeast growth at 7 d of aerobic exposure than the CON diets. In terms of rumen fermentation, the MIX diets had higher (p<0.05) total fermentable fraction and total volatile fatty acid, with lower (p<0.05) pH than those of CON diets. The interaction (p = 0.036) between inoculant and diet level was only found in the immediately fermentable fraction, which inoculant was only effective on LOW diets. Conclusion: Application of corn silage with inoculant on FTMR presented an antifungal effect by inhibiting yeast at aerobic exposure and a carboxylesterase effect by improving nutrient digestibility. It also indicated that fermented feedstuffs could be used as microbial source for FTMR. Generally, the interaction between inoculant and diet level had less effect on this FTMR study.

Production and Identification of Secondary Metabolite Gliotoxin-Like Substance Using Clinical Isolates of Candida spp.

  • Noorulhuda Ojaimi Mahdi, Al-Dahlaki;Safaa Al-Deen Ahmed Shanter, Al-Qaysi
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.488-500
    • /
    • 2022
  • Most fungal infections by opportunistic yeast pathogens such as Candida spp. are the major causes of morbidity and mortality in patients with lowered immune. Previous studies have reported that some strains of Candida secret secondary metabolites play an important role in the decreasing of immunity in the infected patient. In this study, 110 Candida spp. were isolated from different clinical specimens from Baghdad hospitals. Candida isolates were identified by conventional methods, they were processed for Candida speciation on CHROMagar. The results of identification were confirmed by internal transcribed spacer (ITS) sequencing. Phylogenetic trees were analyzed with reference strains deposited in GenBank. Antifungal susceptibility testing was evaluated by the disc diffusion method and performed as recommended by the Clinical and Laboratory Standard Institute (CLSI) M44-A document. Candida isolates investigated produce secondary metabolites gliotoxin with HPLC technique and quantification. Out of 110 Candida isolates, C. albicans (66.36%) was the most frequent isolate, followed by the isolates of C. tropicalis (10.9%) and C. glabrata (6.36%) respectively. Concerning the antifungal susceptibility test, Candida isolates showed a high level of susceptibility to Miconazole (70.9%), Itraconazole (68.2%), and Nystatine (64.5%). The ability of obtained isolates of Candida spp. to produce gliotoxin on RPMI medium was investigated, only 28 isolates had the ability to secret this toxin in culture filtrates. The highest concentrations were detected in C. albicans (1.048 ㎍/ml). Gliotoxin productivity of other Candida species was significantly lower. The retention time for gliotoxin was approximately 5.08 min.

Antibacterial Effects of Tea Tree Oil and Mastic Oil to Streptococcus mutans

  • Song-Yi Yang;So-Hyun Lee;On-Bi Park;Hee-Rang An;Yeong-Hyeon Yu;Eun-Bi Hong;Kyung-Hee Kang;Hwa-Soo Koong
    • Journal of dental hygiene science
    • /
    • v.23 no.1
    • /
    • pp.51-59
    • /
    • 2023
  • Background: Tea tree oil has antiviral, antimicrobial and antifungal effects and Mastic oil has antifungal and anticancer effects. For synergistic effects of oils, blending oil containing a mixture of two to three oils is recommended. This study aimed to determine the antibacterial effects of Tea tree oil, Mastic oil, and Blending oil containing the two oils in a mixture, to verify and suggest the potential use of these oils as a substance to prevent dental caries. Methods: Tea tree oil, Mastic oil, and Blending oil with a 1:1 blend of the two oils were diluted in liquid medium to 0% (negative control), 0.5%, 1.0%, and 2.0%. Streptococcus mutans was applied to each experimental group of the three diluted oils and after 8 h culture, the optical density (OD) was measured and the growth inhibition rate for S. mutans was estimated. Results: Tea tree oil had significantly low OD values across all concentrations (p<0.05) without significant variation among different concentrations (p>0.05). Mastic oil did not significantly vary in OD compared to the negative control across all concentrations (p>0.05) without significant variation among different concentrations (p>0.05). Blending oil, compared to the negative control, did not significantly vary in OD at 0.5% (p>0.05) but significant variation was found as the concentration increased (p<0.05). Additionally, for Tea tree oil and Mastic oil, the growth inhibition rate showed no significant variation according to concentration (p>0.05), whereas for Blending oil, the growth inhibition rate for S. mutans showed a significant difference at 1.0% (p<0.05) and at higher concentrations. Conclusion: Blending oil containing a Tea tree oil and Mastic oil demonstrated a significant growth inhibition effect on S. mutans from the concentration of 1.0%, which suggested its potential use as an effective antibacterial agent for dental caries.

Isolation of Antimicrobial Active Substance from Aristolochia tagala Champ. against Sclerotial Rot (Sclerotinia sclerotiorum) (이엽마두령(Aristolochia tagala Champ.)추출물로부터 균핵병 병원균(Sclerotinia sclerotiorum)에 대한 항균 활성물질 탐색)

  • Kim, Hyun-Sang;Shon, Jinhan;Choi, Yong-Hwa
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.951-962
    • /
    • 2015
  • To develop environment-friendly agricultural products with anti-microbial activity against Sclerotinia sclerotiorum as a pathogen of sclerotium disease, Aristolochia tagala Champ. was extracted by methanol and its extract was fractionated into several solvent fractions. The chloroform fraction, which showed the highest antimicrobial activity, was separated by column chromatography and obtained forty three subfractions. The forty three fractions were searched the anti-fungal activities by bioassay. The most active No. 26 subfraction was analyzed by GC-MS. Each mass spectra, corresponding to each peak of chromatogram, was compared to MS database of Wiley library. As a result, 2,4-di-tetra-butyl-phenol, 2-mono-palmitin, 1-mono-stearin were profiled as maine compounds in No. 26 subfraction. Bioassay using commercial 1-mono-stearin to test for the anti-microbial activity conformed the antimicrobial active compound. In conclusion, 1-mono-stearin identified from Aristolochia tagala Champ. was antimicrobial chemical against Sclerotinia sclerotiorum.

Extraction and Application of Bulk Enzymes and Antimicrobial Substance from Spent Mushroom Substrates

  • Lim, Seon-Hwa;Kwak, A Min;Min, Kyong-Jin;Kim, Sang Su;Kang, Hee Wan
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.19-19
    • /
    • 2014
  • Pleurotus ostreatus, P. eryngii, and Flammulina velutipes are major edible mushrooms that account for over 89% of total mushroom production in Korea. Recently, Agrocybe cylindracea, Hypsizygus marmoreus, and Hericium erinaceu are increasingly being cultivated in mushroom farms. In Korea, the production of edible mushrooms was estimated to be 614,224 ton in 2013. Generally, about 5 kg of mushroom substrate is needed to produce 1 kg of mushroom, and consequently about 25 million tons of spent mushroom substrate (SMS) is produced each year in Korea. Because this massive amount of SMC is unsuitable for reuse in mushroom production, it is either used as garden fertilizer or deposited in landfills, which pollutes the environment. It is reasonably assumed that SMS includes different secondary metabolites and extracellular enzymes produced from mycelia on substrate. Three major groups of enzymes such as cellulases, xylanases, and lignin degrading enzymes are involved in breaking down mushroom substrates. Cellulase and xylanase have been used as the industrial enzymes involving the saccharification of biomass to produce biofuel. In addition, lignin degrading enzymes such as laccases have been used to decolorize the industrial synthetic dyes and remove environmental pollutions such as phenolic compounds. Basidiomycetes produce a large number of biologically active compounds that show antibacterial, antifungal, antiviral, cytotoxic or hallucinogenic activities. However, most previous researches have focused on therapeutics and less on the control of plant diseases. SMS can be considered as an easily available source of active compounds to protect plants from fungal and bacterial infections, helping alleviate the waste disposal problem in the mushroom industry and creating an environmentally friendly method to reduce plant pathogens. We describe extraction of lignocellulytic enzymes and antimicrobial substance from SMSs of different edible mushrooms and their potential applications.

  • PDF

Identification of an antagonistic bacteria and its antibiotic substance against Colletotrichm orbiculare causing anthracnose on cucumber

  • Chae, Hee-Jung;Moon, Surk-Sik;Ahn, Jong-Woong;Chung, Young-Ryun
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.102.1-102
    • /
    • 2003
  • A bacterial strain YC4963 with antifungal activity against Colletotrichum orbiculare, a causal organism of cucumber anthracnose was isolated from the rhizosphere soil of Siegesbeckia pubescens (Siegesbeckia pubescens Makino;Family:Compositae) in Korea. Based on physiological and biochemical characteristics and 16S ribosomal DNA sequence analysis, the bacterial strain was identified as Pseudomonu aureofaciens. The bacteria also inhibited mycelial growth of several plant fungal pathogens such as Botrytis cinerea, Fusarium oxysporum and Rhizoctonia solani on PDA and 0.1 TSA media. The antibiotic activity was found from the culture filtrate of TSB(tryptic soy broth) and its active compounds were quantitatively bound to XAD adsorber resin. The antibiotic spectrum was broad and growth of C. orbiculare and F. oxysporum, B. cinerea were inhibited at very low concentration. The chemical data from various chromatographic procedures showed that active fraction consisted of at least two phenazine derivatives. However, the metabolites had no inhibitory effect on Pythium ultimum which was reported to be sensitive to phenazine antibiotics. The compounds responsible for the activity are now under investigation.

  • PDF