DOI QR코드

DOI QR Code

Production and Identification of Secondary Metabolite Gliotoxin-Like Substance Using Clinical Isolates of Candida spp.

  • Received : 2022.09.27
  • Accepted : 2022.11.28
  • Published : 2022.12.28

Abstract

Most fungal infections by opportunistic yeast pathogens such as Candida spp. are the major causes of morbidity and mortality in patients with lowered immune. Previous studies have reported that some strains of Candida secret secondary metabolites play an important role in the decreasing of immunity in the infected patient. In this study, 110 Candida spp. were isolated from different clinical specimens from Baghdad hospitals. Candida isolates were identified by conventional methods, they were processed for Candida speciation on CHROMagar. The results of identification were confirmed by internal transcribed spacer (ITS) sequencing. Phylogenetic trees were analyzed with reference strains deposited in GenBank. Antifungal susceptibility testing was evaluated by the disc diffusion method and performed as recommended by the Clinical and Laboratory Standard Institute (CLSI) M44-A document. Candida isolates investigated produce secondary metabolites gliotoxin with HPLC technique and quantification. Out of 110 Candida isolates, C. albicans (66.36%) was the most frequent isolate, followed by the isolates of C. tropicalis (10.9%) and C. glabrata (6.36%) respectively. Concerning the antifungal susceptibility test, Candida isolates showed a high level of susceptibility to Miconazole (70.9%), Itraconazole (68.2%), and Nystatine (64.5%). The ability of obtained isolates of Candida spp. to produce gliotoxin on RPMI medium was investigated, only 28 isolates had the ability to secret this toxin in culture filtrates. The highest concentrations were detected in C. albicans (1.048 ㎍/ml). Gliotoxin productivity of other Candida species was significantly lower. The retention time for gliotoxin was approximately 5.08 min.

Keywords

References

  1. Glister G, Williams T. 1944. Production of gliotoxin by Aspergillus fumigatus mut. helvola Yuill. Nature 153: 651-651.  https://doi.org/10.1038/153651a0
  2. Bruce WF, Dutcher JD, Johnson JR, Miller LL. 1944. Gliotoxin, the antibiotic principle of Gliocladium fimbriatum. II. general chemical behavior and crystalline derivatives1. J. Am. Chem. Soc. 66: 614-616.  https://doi.org/10.1021/ja01232a031
  3. Anitha R, Murugesan K. 2005. Production of gliotoxin on natural substrates by Trichoderma virens. J. Basic Microbiol. 45: 12-19.  https://doi.org/10.1002/jobm.200410451
  4. Shah DT, Larsen B. 1991. Clinical isolates of yeast produce a gliotoxin-like substance. Mycopathologia 116: 203-208.  https://doi.org/10.1007/BF00436836
  5. Mayer FL, Wilson D, Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence 4: 119-128.  https://doi.org/10.4161/viru.22913
  6. Kozinn PJ, Taschdjian CL. 1971. Candida and candidiasis. JAMA 217: 965-966.  https://doi.org/10.1001/jama.1971.03190070073027
  7. Shoham S, Marr KA. 2012. Invasive fungal infections in solid organ transplant recipients. Future Microbiol. 7: 639-655.  https://doi.org/10.2217/fmb.12.28
  8. Robert R, Nail S, Marot-Leblond A, Cottin J, Miegeville M, Quenouillere S, et al. 2000. Adherence of platelets to Candida species in vivo. Infect. Immun. 68: 570-576.  https://doi.org/10.1128/IAI.68.2.570-576.2000
  9. Bertling A, Niemann S, Uekotter A, Fegeler W, Lass-Florl C, von Eiff C, et al. 2010. Candida albicans and its metabolite gliotoxin inhibit platelet function via interaction with thiols. Thromb. Haemost. 104: 270-278.  https://doi.org/10.1160/TH09-11-0769
  10. Schlam D, Canton J, Carreno M, Kopinski H, Freeman SA, Grinstein S, et al. 2016. Gliotoxin suppresses macrophage immune function by subverting phosphatidylinositol 3, 4, 5-trisphosphate homeostasis. MBio 7: e02242-02215. 
  11. Waring P, Beaver J. 1996. Gliotoxin and related epipolythiodioxopiperazines. Gen. Pharmacol. 27: 1311-1316.  https://doi.org/10.1016/S0306-3623(96)00083-3
  12. Arias M, Santiago L, Vidal-Garcia M, Redrado S, Lanuza P, Comas L, et al. 2018. Preparations for invasion: Modulation of host lung immunity during pulmonary Aspergillosis by gliotoxin and other fungal secondary metabolites. Front. Immunol. 9: 2549. 
  13. Konig S, Pace S, Pein H, Heinekamp T, Kramer J, Romp E, et al. 2019. Gliotoxin from Aspergillus fumigatus abrogates leukotriene B4 formation through inhibition of leukotriene A4 hydrolase. Cell Chem. Biol. 26: 524-534. e525.  https://doi.org/10.1016/j.chembiol.2019.01.001
  14. Waring P, Sjaarda A, Lin QH. 1995. Gliotoxin inactivates alcohol dehydrogenase by either covalent modification or free radical damage mediated by redox cycling. Biochem. Pharmacol. 49: 1195-1201.  https://doi.org/10.1016/0006-2952(95)00039-3
  15. Hurne AM, Chai CL, Waring P. 2000. Inactivation of rabbit muscle creatine kinase by reversible formation of an internal disulfide bond induced by the fungal toxin gliotoxin. J. Biol. Chem. 275: 25202-25206.  https://doi.org/10.1074/jbc.M002278200
  16. Shah D, Jackman S, Engle J, Larsen B. 1998. Effect of gliotoxin on human polymorphonuclear neutrophils. Infect. Dis. Obstet. Ggynecol. 6: 168-175.  https://doi.org/10.1155/S1064744998000349
  17. Wenehed V, Solyakov A, Thylin I, Haggblom P, Forsby A. 2003. Cytotoxic response of Aspergillus fumigatus-produced mycotoxins on growth medium, maize and commercial animal feed substrates. Food Chem. Toxicol. 41: 395-403.  https://doi.org/10.1016/S0278-6915(02)00250-8
  18. DeWitte-Orr S, Bols N. 2005. Gliotoxin-induced cytotoxicity in three salmonid cell lines: cell death by apoptosis and necrosis. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 141: 157-167.  https://doi.org/10.1016/j.cca.2005.05.015
  19. Kanoh K, Kohno S, Katada J, Hayashi Y, Muramatsu M, Uno I. 1999. Antitumor activity of phenylahistin in vitro and in vivo. Biosci. Biotechnol. Biochem. 63: 1130-1133.  https://doi.org/10.1271/bbb.63.1130
  20. Evans EGV, Richardson MD. 1989. Medical mycology. A practical approach, pp. 97-109. Ed. IRL Press. 
  21. Sheppard DC, Locas M-C, Restieri C, Laverdiere M. 2008. Utility of the germ tube test for direct identification of Candida albicans from positive blood culture bottles. J. Clin. Microbiol. 46: 3508-3509.  https://doi.org/10.1128/JCM.01113-08
  22. Odds FC, Bernaerts R. 1994. CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species. J. Clin. Microbiol. 32: 1923-1929.  https://doi.org/10.1128/jcm.32.8.1923-1929.1994
  23. Al-Tekreeti AR, Al-Halbosiy MM, Dheeb BI, Hashim AJ, Al-Zuhairi AFH, Mohammad FI. 2018. Molecular identification of clinical Candida isolates by simple and randomly amplified polymorphic DNA-PCR. Arab. J. Sci. Eng. 43: 163-170.  https://doi.org/10.1007/s13369-017-2762-1
  24. White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18: 315-322. 
  25. Wayne P. 2004. Method for antifungal disk diffusion susceptibility testing of yeasts. CLSI m44-a. 23: 1-23. 
  26. Kupfahl C, Heinekamp T, Geginat G, Ruppert T, Hartl A, Hof H, et al. 2006. Deletion of the gliP gene of Aspergillus fumigatus results in loss of gliotoxin production but has no effect on virulence of the fungus in a low-dose mouse infection model. Mol. Microbiol. 62: 292-302.  https://doi.org/10.1111/j.1365-2958.2006.05373.x
  27. Nam M, Kim SH, Jeong J-H, Kim S, Kim J. 2022. Roles of the proapoptotic factors CaNma111 and CaYbh3 in apoptosis and virulence of Candida albicans. Sci. Rep. 12: 7574. 
  28. Habib KA, Najee EN, Abood MS. 2016. Identification of Candida species isolated from vulvovaginal Candidiasis patients by Chromgen agar and PCR-RFLP method. Baghdad Sci. J. 13: 291-297.  https://doi.org/10.21123/bsj.13.2.291-297
  29. Khadka S, Sherchand JB, Pokhrel BM, Parajuli K, Mishra SK, Sharma S, et al. 2017. Isolation, speciation and antifungal susceptibility testing of Candida isolates from various clinical specimens at a tertiary care hospital, Nepal. BMC Res. Notes 10: 218. 
  30. Yassin MT, Mostafa AA, Al-Askar AA, Bdeer R. 2020. In vitro antifungal resistance profile of Candida strains isolated from Saudi women suffering from vulvovaginitis. Eur. J. Med. Res. 25. doi: 10.1186/s40001-019-0399-0. 
  31. Manikandan C, Amsath A. 2015. Characterization and susceptibility pattern of Candida species isolated from urine sample in pattukkottai, Tamilnadu, India. Int. J. Pure Appl. Zool. 3: 17-23. 
  32. Risan MH. 2016. Molecular identification of yeast Candida glabrata from candidemia patients in Iraq. Iraqi J. Sci. 57: 808-813. 
  33. Year H, Poulain D, Lefebvre A. 2004. Polymicrobial candidemia revealed by peripheral blood smear and chromogenic medium. J. Clin. Pathol. 57: 196-198.  https://doi.org/10.1136/jcp.2003.9340
  34. Jose LM, Guadalupe C, Francisco S, Manuel C. 2003. CHROMAgar Candida mas fluconazol: comparacion con tecnicas de microdilucion. Enfermedades infecciosas y microbiologia clinica. 21: 493-497.  https://doi.org/10.1016/S0213-005X(03)72994-2
  35. Zareshahrabadi Z, Totonchi A, Rezaei-Matehkolaei A, Ilkit M, Ghahartars M, Arastehfar A, et al. 2021. Molecular identification and antifungal susceptibility among clinical isolates of dermatophytes in Shiraz, Iran (2017-2019). Mycoses 64: 385-393.  https://doi.org/10.1111/myc.13226
  36. Bhattacharya S, Sae-Tia S, Fries BC. 2020. Candidiasis and mechanisms of antifungal resistance. Antibiotics 9: 312. 
  37. Logan A, Wolfe A, Williamson JC. 2022. Antifungal resistance and the role of new therapeutic agents. Curr. Infect. Dis. Rep. 24: 105-116.  https://doi.org/10.1007/s11908-022-00782-5
  38. Efimova S, Schagina L, Ostroumova O. 2014. Investigation of channel-forming activity of polyene macrolide antibiotics in planar lipid bilayers in the presence of dipole modifiers. Acta Nat. 6: 67-79.  https://doi.org/10.32607/20758251-2014-6-4-67-79
  39. Al-mamari A, Al-buryhi M, Al-heggami MA, Al-hag S. 2014. Identify and sensitivity to antifungal drugs of Candida species causing vaginitis isolated from vulvovaginal infected patients in Sana'a city. Der Pharma Chemica. 6: 336-342. 
  40. Turner SA, Butler G. 2014. The Candida pathogenic species complex. Cold Spring Harb. Perspect. Med. 4: a019778. 
  41. de Oliveira Santos GC, Vasconcelos CC, Lopes AJ, de Sousa Cartagenes MdS, Filho AK, do Nascimento FR, et al. 2018. Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front. Microbiol. 9: 1351. 
  42. Hussain AF, Sulaiman GM, Dheeb BI, Hashim AJ, Abd Alrahman ES, Seddiq SH, et al. 2020. Histopathological changes and expression of transforming growth factor beta (TGF-β3) in mice exposed to gliotoxin. J. King Saud Univ.-Sci. 32: 716-725.  https://doi.org/10.1016/j.jksus.2018.10.013
  43. Scharf DH, Brakhage AA, Mukherjee PK. 2016. Gliotoxin-bane or boon? Environ. Microbiol. 18: 1096-1109.  https://doi.org/10.1111/1462-2920.13080
  44. Shah D, Glover D, Larsen B. 1995. In situ mycotoxin production by Candida albicans in women with vaginitis. Gynecol. Obstet. Investig. 39: 67-69.  https://doi.org/10.1159/000292381
  45. Shaheen M. 2001. The production of the mycotoxin [Gliotoxin] by candida albicans in patients with oral candidiasis. Egyptian J. Dermatol. Androl. 21: 21-26. 
  46. Tshabalala N, Mrudula P, Dutton MF. 2016. Examination of Candida albicans strains from South Africa for the production of gliotoxin and other cytotoxic secondary metabolites. J. Yeast Fungal Res. 7: 19-27.  https://doi.org/10.5897/JYFR2015.0164
  47. Suen Y, Fung K, Lee C, Kong S. 2001. Gliotoxin induces apoptosis in cultured macrophages via production of reactive oxygen species and cytochrome c release without mitochondrial depolarization. Free Radic. Res. 35: 1-10.  https://doi.org/10.1080/10715760100300541
  48. Brown R, Priest E, Naglik JR, Richardson JP. 2021. Fungal toxins and host immune responses. Front. Microbiol. 12: 643639.