Browse > Article
http://dx.doi.org/10.48022/mbl.2209.09007

Production and Identification of Secondary Metabolite Gliotoxin-Like Substance Using Clinical Isolates of Candida spp.  

Noorulhuda Ojaimi Mahdi, Al-Dahlaki (Department of Biology, College of Science for (Women), University of Baghdad)
Safaa Al-Deen Ahmed Shanter, Al-Qaysi (Department of Biology, College of Science for (Women), University of Baghdad)
Publication Information
Microbiology and Biotechnology Letters / v.50, no.4, 2022 , pp. 488-500 More about this Journal
Abstract
Most fungal infections by opportunistic yeast pathogens such as Candida spp. are the major causes of morbidity and mortality in patients with lowered immune. Previous studies have reported that some strains of Candida secret secondary metabolites play an important role in the decreasing of immunity in the infected patient. In this study, 110 Candida spp. were isolated from different clinical specimens from Baghdad hospitals. Candida isolates were identified by conventional methods, they were processed for Candida speciation on CHROMagar. The results of identification were confirmed by internal transcribed spacer (ITS) sequencing. Phylogenetic trees were analyzed with reference strains deposited in GenBank. Antifungal susceptibility testing was evaluated by the disc diffusion method and performed as recommended by the Clinical and Laboratory Standard Institute (CLSI) M44-A document. Candida isolates investigated produce secondary metabolites gliotoxin with HPLC technique and quantification. Out of 110 Candida isolates, C. albicans (66.36%) was the most frequent isolate, followed by the isolates of C. tropicalis (10.9%) and C. glabrata (6.36%) respectively. Concerning the antifungal susceptibility test, Candida isolates showed a high level of susceptibility to Miconazole (70.9%), Itraconazole (68.2%), and Nystatine (64.5%). The ability of obtained isolates of Candida spp. to produce gliotoxin on RPMI medium was investigated, only 28 isolates had the ability to secret this toxin in culture filtrates. The highest concentrations were detected in C. albicans (1.048 ㎍/ml). Gliotoxin productivity of other Candida species was significantly lower. The retention time for gliotoxin was approximately 5.08 min.
Keywords
Candida species; gliotoxin; virulence factors; CHROMagar;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Robert R, Nail S, Marot-Leblond A, Cottin J, Miegeville M, Quenouillere S, et al. 2000. Adherence of platelets to Candida species in vivo. Infect. Immun. 68: 570-576.    DOI
2 Bertling A, Niemann S, Uekotter A, Fegeler W, Lass-Florl C, von Eiff C, et al. 2010. Candida albicans and its metabolite gliotoxin inhibit platelet function via interaction with thiols. Thromb. Haemost. 104: 270-278.    DOI
3 Schlam D, Canton J, Carreno M, Kopinski H, Freeman SA, Grinstein S, et al. 2016. Gliotoxin suppresses macrophage immune function by subverting phosphatidylinositol 3, 4, 5-trisphosphate homeostasis. MBio 7: e02242-02215. 
4 Waring P, Beaver J. 1996. Gliotoxin and related epipolythiodioxopiperazines. Gen. Pharmacol. 27: 1311-1316.    DOI
5 Arias M, Santiago L, Vidal-Garcia M, Redrado S, Lanuza P, Comas L, et al. 2018. Preparations for invasion: Modulation of host lung immunity during pulmonary Aspergillosis by gliotoxin and other fungal secondary metabolites. Front. Immunol. 9: 2549. 
6 Konig S, Pace S, Pein H, Heinekamp T, Kramer J, Romp E, et al. 2019. Gliotoxin from Aspergillus fumigatus abrogates leukotriene B4 formation through inhibition of leukotriene A4 hydrolase. Cell Chem. Biol. 26: 524-534. e525.    DOI
7 Waring P, Sjaarda A, Lin QH. 1995. Gliotoxin inactivates alcohol dehydrogenase by either covalent modification or free radical damage mediated by redox cycling. Biochem. Pharmacol. 49: 1195-1201.    DOI
8 Hurne AM, Chai CL, Waring P. 2000. Inactivation of rabbit muscle creatine kinase by reversible formation of an internal disulfide bond induced by the fungal toxin gliotoxin. J. Biol. Chem. 275: 25202-25206.    DOI
9 Shah D, Jackman S, Engle J, Larsen B. 1998. Effect of gliotoxin on human polymorphonuclear neutrophils. Infect. Dis. Obstet. Ggynecol. 6: 168-175.    DOI
10 Wenehed V, Solyakov A, Thylin I, Haggblom P, Forsby A. 2003. Cytotoxic response of Aspergillus fumigatus-produced mycotoxins on growth medium, maize and commercial animal feed substrates. Food Chem. Toxicol. 41: 395-403.    DOI
11 DeWitte-Orr S, Bols N. 2005. Gliotoxin-induced cytotoxicity in three salmonid cell lines: cell death by apoptosis and necrosis. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 141: 157-167.    DOI
12 Kanoh K, Kohno S, Katada J, Hayashi Y, Muramatsu M, Uno I. 1999. Antitumor activity of phenylahistin in vitro and in vivo. Biosci. Biotechnol. Biochem. 63: 1130-1133.    DOI
13 Evans EGV, Richardson MD. 1989. Medical mycology. A practical approach, pp. 97-109. Ed. IRL Press. 
14 Sheppard DC, Locas M-C, Restieri C, Laverdiere M. 2008. Utility of the germ tube test for direct identification of Candida albicans from positive blood culture bottles. J. Clin. Microbiol. 46: 3508-3509.    DOI
15 Odds FC, Bernaerts R. 1994. CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species. J. Clin. Microbiol. 32: 1923-1929.    DOI
16 Al-Tekreeti AR, Al-Halbosiy MM, Dheeb BI, Hashim AJ, Al-Zuhairi AFH, Mohammad FI. 2018. Molecular identification of clinical Candida isolates by simple and randomly amplified polymorphic DNA-PCR. Arab. J. Sci. Eng. 43: 163-170.    DOI
17 White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18: 315-322. 
18 Wayne P. 2004. Method for antifungal disk diffusion susceptibility testing of yeasts. CLSI m44-a. 23: 1-23. 
19 Nam M, Kim SH, Jeong J-H, Kim S, Kim J. 2022. Roles of the proapoptotic factors CaNma111 and CaYbh3 in apoptosis and virulence of Candida albicans. Sci. Rep. 12: 7574. 
20 Kupfahl C, Heinekamp T, Geginat G, Ruppert T, Hartl A, Hof H, et al. 2006. Deletion of the gliP gene of Aspergillus fumigatus results in loss of gliotoxin production but has no effect on virulence of the fungus in a low-dose mouse infection model. Mol. Microbiol. 62: 292-302.    DOI
21 Habib KA, Najee EN, Abood MS. 2016. Identification of Candida species isolated from vulvovaginal Candidiasis patients by Chromgen agar and PCR-RFLP method. Baghdad Sci. J. 13: 291-297.    DOI
22 Khadka S, Sherchand JB, Pokhrel BM, Parajuli K, Mishra SK, Sharma S, et al. 2017. Isolation, speciation and antifungal susceptibility testing of Candida isolates from various clinical specimens at a tertiary care hospital, Nepal. BMC Res. Notes 10: 218. 
23 Yassin MT, Mostafa AA, Al-Askar AA, Bdeer R. 2020. In vitro antifungal resistance profile of Candida strains isolated from Saudi women suffering from vulvovaginitis. Eur. J. Med. Res. 25. doi: 10.1186/s40001-019-0399-0.    DOI
24 Manikandan C, Amsath A. 2015. Characterization and susceptibility pattern of Candida species isolated from urine sample in pattukkottai, Tamilnadu, India. Int. J. Pure Appl. Zool. 3: 17-23. 
25 Risan MH. 2016. Molecular identification of yeast Candida glabrata from candidemia patients in Iraq. Iraqi J. Sci. 57: 808-813. 
26 Year H, Poulain D, Lefebvre A. 2004. Polymicrobial candidemia revealed by peripheral blood smear and chromogenic medium. J. Clin. Pathol. 57: 196-198.    DOI
27 Jose LM, Guadalupe C, Francisco S, Manuel C. 2003. CHROMAgar Candida mas fluconazol: comparacion con tecnicas de microdilucion. Enfermedades infecciosas y microbiologia clinica. 21: 493-497.    DOI
28 Logan A, Wolfe A, Williamson JC. 2022. Antifungal resistance and the role of new therapeutic agents. Curr. Infect. Dis. Rep. 24: 105-116.    DOI
29 Zareshahrabadi Z, Totonchi A, Rezaei-Matehkolaei A, Ilkit M, Ghahartars M, Arastehfar A, et al. 2021. Molecular identification and antifungal susceptibility among clinical isolates of dermatophytes in Shiraz, Iran (2017-2019). Mycoses 64: 385-393.    DOI
30 Bhattacharya S, Sae-Tia S, Fries BC. 2020. Candidiasis and mechanisms of antifungal resistance. Antibiotics 9: 312. 
31 de Oliveira Santos GC, Vasconcelos CC, Lopes AJ, de Sousa Cartagenes MdS, Filho AK, do Nascimento FR, et al. 2018. Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front. Microbiol. 9: 1351. 
32 Efimova S, Schagina L, Ostroumova O. 2014. Investigation of channel-forming activity of polyene macrolide antibiotics in planar lipid bilayers in the presence of dipole modifiers. Acta Nat. 6: 67-79.    DOI
33 Al-mamari A, Al-buryhi M, Al-heggami MA, Al-hag S. 2014. Identify and sensitivity to antifungal drugs of Candida species causing vaginitis isolated from vulvovaginal infected patients in Sana'a city. Der Pharma Chemica. 6: 336-342. 
34 Turner SA, Butler G. 2014. The Candida pathogenic species complex. Cold Spring Harb. Perspect. Med. 4: a019778. 
35 Hussain AF, Sulaiman GM, Dheeb BI, Hashim AJ, Abd Alrahman ES, Seddiq SH, et al. 2020. Histopathological changes and expression of transforming growth factor beta (TGF-β3) in mice exposed to gliotoxin. J. King Saud Univ.-Sci. 32: 716-725.    DOI
36 Scharf DH, Brakhage AA, Mukherjee PK. 2016. Gliotoxin-bane or boon? Environ. Microbiol. 18: 1096-1109.    DOI
37 Shah D, Glover D, Larsen B. 1995. In situ mycotoxin production by Candida albicans in women with vaginitis. Gynecol. Obstet. Investig. 39: 67-69.    DOI
38 Suen Y, Fung K, Lee C, Kong S. 2001. Gliotoxin induces apoptosis in cultured macrophages via production of reactive oxygen species and cytochrome c release without mitochondrial depolarization. Free Radic. Res. 35: 1-10.    DOI
39 Shaheen M. 2001. The production of the mycotoxin [Gliotoxin] by candida albicans in patients with oral candidiasis. Egyptian J. Dermatol. Androl. 21: 21-26. 
40 Tshabalala N, Mrudula P, Dutton MF. 2016. Examination of Candida albicans strains from South Africa for the production of gliotoxin and other cytotoxic secondary metabolites. J. Yeast Fungal Res. 7: 19-27.    DOI
41 Brown R, Priest E, Naglik JR, Richardson JP. 2021. Fungal toxins and host immune responses. Front. Microbiol. 12: 643639.
42 Glister G, Williams T. 1944. Production of gliotoxin by Aspergillus fumigatus mut. helvola Yuill. Nature 153: 651-651.    DOI
43 Bruce WF, Dutcher JD, Johnson JR, Miller LL. 1944. Gliotoxin, the antibiotic principle of Gliocladium fimbriatum. II. general chemical behavior and crystalline derivatives1. J. Am. Chem. Soc. 66: 614-616.    DOI
44 Anitha R, Murugesan K. 2005. Production of gliotoxin on natural substrates by Trichoderma virens. J. Basic Microbiol. 45: 12-19.    DOI
45 Shah DT, Larsen B. 1991. Clinical isolates of yeast produce a gliotoxin-like substance. Mycopathologia 116: 203-208.    DOI
46 Mayer FL, Wilson D, Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence 4: 119-128.    DOI
47 Kozinn PJ, Taschdjian CL. 1971. Candida and candidiasis. JAMA 217: 965-966.    DOI
48 Shoham S, Marr KA. 2012. Invasive fungal infections in solid organ transplant recipients. Future Microbiol. 7: 639-655.    DOI