Browse > Article
http://dx.doi.org/10.23093/FSI.2020.53.1.43

Food application of enzymes derived from microorganisms degrading chitin and chitosan  

Park, Jae Kweon (Department of Life Science, College of Bio-nano, Gachon University)
Publication Information
Food Science and Industry / v.53, no.1, 2020 , pp. 43-55 More about this Journal
Abstract
Most reports demonstrated the substrate specificity-based kinetic properties of chitin or chitosan degrading enzymes. However, there is virtually less information on the high quality and quantity production of chitin or chitosan hydrolysates having a larger than (GlcN)7 from the hydrolysis of high molecular weight chitosan using specific enzymes and their biological activity. Therefore, the production of such molecules and the discovery of such enzyme sources are very important. Fortunately, the author has established a mass production method of chitosan hydrolysates (GlcN)n, n=2-13 that have been characterized as a potent antioxidant substance, as well as antifungal and antibacterial activities against Penicillium species and highly selective pathogenic bacteria. In addition, preclinical studies using (GlcN)n, n=5-25 demonstrated that these molecules played a very important role in maintaining biometric balance. Collectively, it is implicated that the application of these mixed substances to foods with significant biological activity is very encouraging.
Keywords
chitin; chitosan; enzyme; catabolic cascade; biological activity; food application;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yang F, Luan B, Sun Z, Yang C, Yu Z, Li X. Application of chitooligosaccharides as antioxidants in beer to improve the flavour stability by protecting against beer staling during storage. Biotechnol. Lett. 39: 305-310 (2017)   DOI
2 Zhao X, Gänzle MG. Genetic and phenotypic analysis of carbohydrate metabolism and transport in Lactobacillus reuteri. Int. J. Food Microbiol. 272: 12-21 (2018)   DOI
3 Zhao H, Wu B, Wu H, Su L, Pang J, Yang T, Liu Y. Protective immunity in rats by intranasal immunization with Streptococcus mutans glucan-binding protein D encapsulated into chitosancoated poly(lactic-co-glycolic acid) microspheres. Biotechnol. Lett. 28: 1299-1304 (2006)   DOI
4 Zheng B, Wen ZS, Huang YJ, Xia MS, Xiang XW, Qu YL. Molecular weight-dependent immunostimulative activity of low molecular weight chitosan via regulating NF-KB and AP-1 signaling pathways in RAW264.7 macrophages. Mar. Drugs 14: E169 (2016)   DOI
5 Zitouni M, Fortin M, Scheerle RK, Letzel T, Matteau D, Rodrigue S. Brzezinski R. Biochemical and molecular characterization of a thermostable chitosanase produced by the strain Paenibacillus sp. 1794 newly isolated from compost. Appl. Microbiol. Biotechnol. 97: 5801-5813 (2013)   DOI
6 Aam BB, Heggset EB, Norberg AL, Sorlie M, Varum KM, Eijsink VG. Production of chitooligosaccharides and their potential applications in medicine. Mar. Drugs 8: 1482-1517 (2010)   DOI
7 Adachi W, Sakihama Y, Shimizu S, Sunami T, Fukazawa T, Suzuki M, Yatsunami R, Nakamura S, Takenaka A. Crystal structure of family GH-8 chitosanase with subclass II specificity from Bacillus sp. K17, J. Mol. Biol. 343: 785-795 (2004)   DOI
8 Boucher I, Dupuy A, Vidal P, Neugebauer WA, Brzezinski R. Purification and characterization of a chitosanase from Streptomyces N174. Appl. Microbiol. Biotechnol. 38: 188-193 (1992)   DOI
9 Auzely R, Rinaudo M. Controlled chemical modifications of chitosan characterization and investigation of original properties. Macromol. Biosci. 3: 562-565 (2003)   DOI
10 Bassler BL, Yu C, Lee YC, Roseman S. Chitin utilization by marine bacteria: Degradation and catabolism of chitin oligosaccharides by Vibrio furnissii. J. Biol. Chem. 26: 24276-24286 (1991)   DOI
11 Bouma CL, Roseman S. Sugar transport by the marine chitinolytic bacterium Vibrio furnissii: Molecular cloning and analysis of the glucose and N-acetylgucosamine permeases. J. Biol. Chem. 271: 33457-33467 (1996)   DOI
12 Brugnerotto J, Desbrieres J, Heux L, Mazeau K, Rinaudo M. Overview on structural characterization of chitosan molecules in relation with their behavior in solution. Macromol. Symp. 168: 1-20 (2001)
13 Allan GG, Peyron M. Molecular weight manipulation of chitosan II: Prediction and control of extend of depolymer-ization by nitrous acid. Carbohydr. Res. 277: 273-282 (1995)   DOI
14 Cai J, Yang J, Du Y, Fan L, Qiu Y, Li J, Kennedy JF. Purification and characterization of chitin deacetylase from Scopulariopsis brevicaulis. Carbohydr. Polym. 65: 211-217 (2006)   DOI
15 Chen WP, Anderson AW. Purification, immobilization, and some properties of glucose isomerase from Streptomyces flavogriseus. Appl. Environ. Microbiol. 38: 1111-1119 (1979)   DOI
16 Dweltz NE, Colvin JR, McInnes AG. Studies on chitin(b-(1-4)-linked 2-acetamido-2 -deoxy-D-glucan) fibers from the diatom Thalassiosira fluviatilis, Hust edt. III. The structure of chitin from X-ray diffraction and electron microscope observations. Can. J. Chem. 46: 1513-1521 (1968)   DOI
17 Guo X, Xu P, Zong M, Lou W. Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis CS0611. Chinese J. Catal. 38: 665-672 (2017)   DOI
18 Farag AM, Abd-Elnabey HM, Ibrahim HAH, El-Shenawy M. Purification, characterization and antimicrobial activity of chitinase from marine-derived Aspergillus terreus, Egypt. J. Aquat. Res. 42: 185-192 (2016)   DOI
19 Gao XA, Ju WT, Jung WJ, Park RD. Purification and characterization of chitosanase from Bacillus cereus D-11. Carbohydr. Polym. 72:513-520 (2008)   DOI
20 Goo BG, Park JK. Characterization of an alkalophilic extracellular chitosanase from Bacillus cereus GU-02. J. Biosci. Bioeng. 117: 684-689 (2014)   DOI
21 Keyhani NO, Rodgers ME, Demeler B, Hansen JC, Roseman S. Analytical sedimentation of the IIAChb and IIBChb proteins of the Escherichia coli N,N′-diacetylchitobiose phosphotransferase system: Demonstration of a model phosphotransfer transition state complex. J. Biol. Chem. 275: 33110-33115 (2000)   DOI
22 Jiang X, Chen D, Chen L, Yang G, Zou S. Purification, characterization, and action mode of a chitosanase from Streptomyces roseolus induced by chitin. Carbohydr. Res. 355: 40-44 (2012)   DOI
23 Kashif SA, Park JK. Enzymatically Hydrolyzed water-soluble chitosan as a potent anti-microbial agent. Macromol. Res. 27(6): 551-557 (2019)   DOI
24 Keyhani NO, Li X, Roseman S. Chitin catabolism in the marine bacterium Vibrio furnissii: Identification and molecular cloning of a chitoporin. J. Biol. Chem. 275: 33068-33076 (2000)   DOI
25 Keyhani NO, Roseman S. The chitin catabolic cascade in the marine bacterium Vibrio furnissii: Molecular cloning, isolation and characterization of a periplasmic chitodextrinase. J. Biol. Chem. 271: 33414-33424 (1996)   DOI
26 Kilara A, Shahani KM. The use of immobilized enzymes in the food industry: A review. CRC Crit. Rev. Food Sci. Nutr. 12: 161-198 (1979)   DOI
27 Keyhani NO, Roseman S. The chitin catabolic cascade in the marine bacterium Vibrio furnissii: Molecular cloning, isolation and characterization of a periplasmic b-N-acetylglucosaminidase. J. Biol. Chem. 271: 33425-33432 (1996)   DOI
28 Keyhani NO, Roseman S. Wild-type Escherichia coli grows on the chitin disaccharide, N,N′-diacetylchitobiose, by expressing the cell operon. Proc. Natl. Acad. Sci. 94: 14367-14371 (1997)   DOI
29 Keyhani NO, Wang L-X, Lee YC, Roseman S. The chitin catabolic cascade in the marine bacterium Vibrio furnissii: Characterization of an N,N′-diacetyl-chitobiose transport system. J. Biol. Chem. 271:33409-33413 (1996)   DOI
30 Keyhani NO, Wang L-X, Lee YC, Roseman S. The chitin disaccharide, N,N′-diacetylchitobiose, is catabolized by Escherichia coli, and is transported/phosphorylated by the phosphoenolpyruvate: glycose phosphotransferase system. J. Biol. Chem. 275: 33084-33090 (2000).   DOI
31 Kim JW, Lee CG, Hwang YJ, Park JK. Active molecular chitosan (AMC-S1): Preparation and characterization of antibacterial activity. J. Chitin Chitosan 20(4): 280-286 (2015)   DOI
32 Kim JW, Park JK. Synergistic antimicrobial properties of active molecular chitosan with EDTA-divalent metal ion compounds. J. Phytopathol. 165: 641-651 (2017)   DOI
33 Kimoto H, Kusaoke H, Yamamoto I, Fujii Y, Onodera T, Taketo A. Biochemical and genetic properties of Paenibacillus glycosyl hydrolase having chitosanase activity and discoidin domain. J. Biol. Chem. 277: 14695-14702 (2002)   DOI
34 Kumar M, Brar A, Vivekanand V, Pareek N. Process optimization, purification and characterization of a novel acidic, thermostable chitinase from Humicola grisea. Int. J. Biol. Macromol. 116: 931-938 (2018)   DOI
35 Park JK, Morita K, Fukumoto I, Yamasaki Y, Nakagawa T, Kawamukai M, Matsuda H. Purification and characterization of the chitinase (ChiA) from Enterobacter sp. G-1, Biosci. Biotechnol. Biochem. 61: 684-689 (1997)   DOI
36 Linton SM, Greenway P. Presence and properties of cellulase and hemicellulase enzymes of the gecarcinid land crabs Gecarcoidea natalis and Discoplax hirtipes. The J. Exp. Biol. 207: 4095-4104 (2004)   DOI
37 Macdonald, A. G. , Martinac, B. , Bartlett, D. H. High pressure experiments with porins from the barophile Photobacterium profundum SS9, Progr. Biotechnol. 19: 311-316 (2002)
38 Montilla A, Ruiz-Matute AI, Corzo N, Giacomini C, Irazoqui G. Enzymatic generation of chitooligosaccharides from chitosan using soluble and immobilizedglycosyltransferase (Branchzyme). J. Agric. Food Chem. 61: 10360-10367 (2013)   DOI
39 Park JK, Choi DJ, Kim SM, Choi HN, Park JW, Jang SJ, Choo YK, Park YI. Purification and characterization of a polysialic acid-specific sialidase from Pseudomonas fluorescens JK-0412, Biotechnol. Bioprocess Eng. 17: 526-537 (2012)   DOI
40 Park JK, Chung MJ, Choi HN, Park YI. Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity. Int. J. Mol. Sci. 12: 266-277 (2011)   DOI
41 Park JK, Shimono K, Ochiai N, Shigeru K, Kurita M, Ohta Y, Tanaka K, Matsuda H, Kawamukai M. Purification, characterization, and gene analysis of a chitosanase (ChoA) from Matsuebacter chitosanotabidus 3001, J. Bacteriol. 181: 6642-6649 (1999)   DOI
42 Park YM, Ghim SY. Enhancement of the activity and pH-performance of chitosanase from Bacillus cereus strains by DNA shuffling. Biotechnol. Lett. 31: 1463e1467 (2009)   DOI
43 Petersen L, Ardevol A, Rovira C, Reilly PJ. Mechanism of cellulose hydrolysis by inverting GH8 endoglucanases: A QM/MM metadynamics study. J. Phys. Chem. B 113: 7331-7339 (2009)   DOI
44 Park JK, Keyhani NO, Roseman S. Chitin catabolism in the marine bacterium Vibrio furnissii: Identification, molecular cloning, and characterization of a N,N′-diacetylchitobiose phosphorylase. J. Biol. Chem. 275: 33077-33083 (2000)   DOI
45 Park JK, Wang L-X, Patel HV, Roseman S. Molecular cloning and characterization of a unique beta-glucosidase from Vibrio cholerae. J. Biol. Chem. 277: 29555-29560 (2002)   DOI
46 Park JK, Wang L-X, Roseman S. Isolation of a glucosamine-specific kinase, a unique enzyme of Vibrio cholerae, J. Biol. Chem. 277: 15573-15578 (2002)   DOI
47 Rinaudo M, Milas M, Le Dung P. Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. Int. J. Biol. Macromol. 15: 281-285 (1993)   DOI
48 Robb FT, Park JB, Adams MWW. Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium, Pyrococcus furiosus. Bioch. Biophys. Acta, 1120: 267-272 (1992)   DOI
49 Sakairi N, Nishi N, Tokura S. Cyclodextrin-linked chitosan: synthesis and inclusion complexation ability. In:El-Nokaly MA, Soini HA, editors. Polysaccharide applications: cosmetics and pharmaceuticals, ACS Symposium Series 737: 68-84 (1999)
50 Sano H, Matsukubo T, Shibasaki K, Itoi H, Takaesu Y. Inhibition of adsorption of oral Streptococci to saliva treated hydroxyapatite by chitin derivatives. Bull. Tokyo Dent. Coll. 32: 9-17 (1991)
51 Thomas L, Joseph A, Gottumukkala, LD. Xylanase and cellulase systems of Clostridium sp.: An insight on molecular approaches for strain improvement. Biores. Technol. 158: 343-350 (2014)   DOI
52 Sarasam AR, Brown P, Khajotia SS, Dmytryk JJ, Madihally SV. Antibacterial activity of chitosan-based matrices on oral pathogens. J. Mater. Sci. Mater. Med. 19: 1083-1090 (2008)   DOI
53 Shen KT, Chen MH, Chan HY, Jeng JH, Wang YJ. Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem. Toxicol. 47: 1864-1871 (2009)   DOI
54 Sinha S, Dhakate SR, Kumar P, Mathur RB, Tripathi P, Chand S. Electrospun poly-acrylonitrile nanofibrous membranes for chitosanase immobilization and its application in selective production of chitooligosaccharides. Biores. Technol. 115: 152-157 (2012)   DOI
55 Song JY, Alnaeeli M, Park JK. Efficient digestion of chitosan using chitosanase immobilized onsilica-gel for the production of multisize chitooligosaccharides. Proc. Biochem. 49: 2107-2113 (2014)   DOI
56 Tanabe T, Morinaga K, Fukamizo T, Mitsutomi M. Novel chitosanase from Streptomyces griseus HUT 6037 with transglycosylation activity. Biosci. Biotechnol. Biochem. 67: 354-364 (2003)   DOI
57 Tomida H, Fujii T, Furutani N, Michihara A, Yasufuku T, Akasaki K, Maruyama T, Otagiri M, Gebicki JM, Anraku M. Antioxidant properties of some different molecular weight chitosans. Carbohydr. Res.,344: 1690-1696 (2009)   DOI
58 Wang SL, Tseng WN, Liang TW. Biodegradation of shellfish wastes and production of chitosanases by a squid pen-assimilating bacterium, Acinetobacter calcoaceticus TKU024. Biodegrad. 22: 939-948 (2011)   DOI
59 Van-Thuoc D, Huu-Phong T, Minh-Khuong D, Hatti-Kaul R. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production by a moderate halophile Yangia sp. ND199 using glycerol as a carbon source. Appl. Biochem. Biotechnol. 75: 3120-3132 (2015)
60 Wang SL, Peng JH, Liang TW, Liu KC. Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydr. Res. 343: 1316-1323 (2008)   DOI