DOI QR코드

DOI QR Code

키틴과 키토산 분해 미생물 유래 효소의 식품에의 이용

Food application of enzymes derived from microorganisms degrading chitin and chitosan

  • 박제권 (가천대학교 바이오나노대학 생명과학과)
  • Park, Jae Kweon (Department of Life Science, College of Bio-nano, Gachon University)
  • 투고 : 2020.02.03
  • 심사 : 2020.02.19
  • 발행 : 2020.03.31

초록

Most reports demonstrated the substrate specificity-based kinetic properties of chitin or chitosan degrading enzymes. However, there is virtually less information on the high quality and quantity production of chitin or chitosan hydrolysates having a larger than (GlcN)7 from the hydrolysis of high molecular weight chitosan using specific enzymes and their biological activity. Therefore, the production of such molecules and the discovery of such enzyme sources are very important. Fortunately, the author has established a mass production method of chitosan hydrolysates (GlcN)n, n=2-13 that have been characterized as a potent antioxidant substance, as well as antifungal and antibacterial activities against Penicillium species and highly selective pathogenic bacteria. In addition, preclinical studies using (GlcN)n, n=5-25 demonstrated that these molecules played a very important role in maintaining biometric balance. Collectively, it is implicated that the application of these mixed substances to foods with significant biological activity is very encouraging.

키워드

참고문헌

  1. Aam BB, Heggset EB, Norberg AL, Sorlie M, Varum KM, Eijsink VG. Production of chitooligosaccharides and their potential applications in medicine. Mar. Drugs 8: 1482-1517 (2010) https://doi.org/10.3390/md8051482
  2. Adachi W, Sakihama Y, Shimizu S, Sunami T, Fukazawa T, Suzuki M, Yatsunami R, Nakamura S, Takenaka A. Crystal structure of family GH-8 chitosanase with subclass II specificity from Bacillus sp. K17, J. Mol. Biol. 343: 785-795 (2004) https://doi.org/10.1016/j.jmb.2004.08.028
  3. Allan GG, Peyron M. Molecular weight manipulation of chitosan II: Prediction and control of extend of depolymer-ization by nitrous acid. Carbohydr. Res. 277: 273-282 (1995) https://doi.org/10.1016/0008-6215(95)00208-B
  4. Auzely R, Rinaudo M. Controlled chemical modifications of chitosan characterization and investigation of original properties. Macromol. Biosci. 3: 562-565 (2003) https://doi.org/10.1002/mabi.200300018
  5. Bassler BL, Yu C, Lee YC, Roseman S. Chitin utilization by marine bacteria: Degradation and catabolism of chitin oligosaccharides by Vibrio furnissii. J. Biol. Chem. 26: 24276-24286 (1991) https://doi.org/10.1016/S0021-9258(18)54225-3
  6. Boucher I, Dupuy A, Vidal P, Neugebauer WA, Brzezinski R. Purification and characterization of a chitosanase from Streptomyces N174. Appl. Microbiol. Biotechnol. 38: 188-193 (1992) https://doi.org/10.1007/BF00174466
  7. Bouma CL, Roseman S. Sugar transport by the marine chitinolytic bacterium Vibrio furnissii: Molecular cloning and analysis of the glucose and N-acetylgucosamine permeases. J. Biol. Chem. 271: 33457-33467 (1996) https://doi.org/10.1074/jbc.271.52.33457
  8. Brugnerotto J, Desbrieres J, Heux L, Mazeau K, Rinaudo M. Overview on structural characterization of chitosan molecules in relation with their behavior in solution. Macromol. Symp. 168: 1-20 (2001)
  9. Cai J, Yang J, Du Y, Fan L, Qiu Y, Li J, Kennedy JF. Purification and characterization of chitin deacetylase from Scopulariopsis brevicaulis. Carbohydr. Polym. 65: 211-217 (2006) https://doi.org/10.1016/j.carbpol.2006.01.003
  10. Chen WP, Anderson AW. Purification, immobilization, and some properties of glucose isomerase from Streptomyces flavogriseus. Appl. Environ. Microbiol. 38: 1111-1119 (1979) https://doi.org/10.1128/AEM.38.6.1111-1119.1979
  11. Dweltz NE, Colvin JR, McInnes AG. Studies on chitin(b-(1-4)-linked 2-acetamido-2 -deoxy-D-glucan) fibers from the diatom Thalassiosira fluviatilis, Hust edt. III. The structure of chitin from X-ray diffraction and electron microscope observations. Can. J. Chem. 46: 1513-1521 (1968) https://doi.org/10.1139/v68-248
  12. Farag AM, Abd-Elnabey HM, Ibrahim HAH, El-Shenawy M. Purification, characterization and antimicrobial activity of chitinase from marine-derived Aspergillus terreus, Egypt. J. Aquat. Res. 42: 185-192 (2016) https://doi.org/10.1016/j.ejar.2016.04.004
  13. Gao XA, Ju WT, Jung WJ, Park RD. Purification and characterization of chitosanase from Bacillus cereus D-11. Carbohydr. Polym. 72:513-520 (2008) https://doi.org/10.1016/j.carbpol.2007.09.025
  14. Goo BG, Park JK. Characterization of an alkalophilic extracellular chitosanase from Bacillus cereus GU-02. J. Biosci. Bioeng. 117: 684-689 (2014) https://doi.org/10.1016/j.jbiosc.2013.11.005
  15. Guo X, Xu P, Zong M, Lou W. Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis CS0611. Chinese J. Catal. 38: 665-672 (2017) https://doi.org/10.1016/S1872-2067(17)62787-6
  16. Jiang X, Chen D, Chen L, Yang G, Zou S. Purification, characterization, and action mode of a chitosanase from Streptomyces roseolus induced by chitin. Carbohydr. Res. 355: 40-44 (2012) https://doi.org/10.1016/j.carres.2012.05.002
  17. Kashif SA, Park JK. Enzymatically Hydrolyzed water-soluble chitosan as a potent anti-microbial agent. Macromol. Res. 27(6): 551-557 (2019) https://doi.org/10.1007/s13233-019-7095-3
  18. Keyhani NO, Li X, Roseman S. Chitin catabolism in the marine bacterium Vibrio furnissii: Identification and molecular cloning of a chitoporin. J. Biol. Chem. 275: 33068-33076 (2000) https://doi.org/10.1074/jbc.M001041200
  19. Keyhani NO, Rodgers ME, Demeler B, Hansen JC, Roseman S. Analytical sedimentation of the IIAChb and IIBChb proteins of the Escherichia coli N,N′-diacetylchitobiose phosphotransferase system: Demonstration of a model phosphotransfer transition state complex. J. Biol. Chem. 275: 33110-33115 (2000) https://doi.org/10.1074/jbc.M001717200
  20. Keyhani NO, Roseman S. The chitin catabolic cascade in the marine bacterium Vibrio furnissii: Molecular cloning, isolation and characterization of a periplasmic chitodextrinase. J. Biol. Chem. 271: 33414-33424 (1996) https://doi.org/10.1074/jbc.271.52.33414
  21. Keyhani NO, Roseman S. The chitin catabolic cascade in the marine bacterium Vibrio furnissii: Molecular cloning, isolation and characterization of a periplasmic b-N-acetylglucosaminidase. J. Biol. Chem. 271: 33425-33432 (1996) https://doi.org/10.1074/jbc.271.52.33425
  22. Keyhani NO, Roseman S. Wild-type Escherichia coli grows on the chitin disaccharide, N,N′-diacetylchitobiose, by expressing the cell operon. Proc. Natl. Acad. Sci. 94: 14367-14371 (1997) https://doi.org/10.1073/pnas.94.26.14367
  23. Keyhani NO, Wang L-X, Lee YC, Roseman S. The chitin catabolic cascade in the marine bacterium Vibrio furnissii: Characterization of an N,N′-diacetyl-chitobiose transport system. J. Biol. Chem. 271:33409-33413 (1996) https://doi.org/10.1074/jbc.271.52.33409
  24. Keyhani NO, Wang L-X, Lee YC, Roseman S. The chitin disaccharide, N,N′-diacetylchitobiose, is catabolized by Escherichia coli, and is transported/phosphorylated by the phosphoenolpyruvate: glycose phosphotransferase system. J. Biol. Chem. 275: 33084-33090 (2000). https://doi.org/10.1074/jbc.M001043200
  25. Kilara A, Shahani KM. The use of immobilized enzymes in the food industry: A review. CRC Crit. Rev. Food Sci. Nutr. 12: 161-198 (1979) https://doi.org/10.1080/10408397909527276
  26. Kim JW, Lee CG, Hwang YJ, Park JK. Active molecular chitosan (AMC-S1): Preparation and characterization of antibacterial activity. J. Chitin Chitosan 20(4): 280-286 (2015) https://doi.org/10.17642/jcc.20.4.9
  27. Kim JW, Park JK. Synergistic antimicrobial properties of active molecular chitosan with EDTA-divalent metal ion compounds. J. Phytopathol. 165: 641-651 (2017) https://doi.org/10.1111/jph.12603
  28. Kimoto H, Kusaoke H, Yamamoto I, Fujii Y, Onodera T, Taketo A. Biochemical and genetic properties of Paenibacillus glycosyl hydrolase having chitosanase activity and discoidin domain. J. Biol. Chem. 277: 14695-14702 (2002) https://doi.org/10.1074/jbc.M108660200
  29. Kumar M, Brar A, Vivekanand V, Pareek N. Process optimization, purification and characterization of a novel acidic, thermostable chitinase from Humicola grisea. Int. J. Biol. Macromol. 116: 931-938 (2018) https://doi.org/10.1016/j.ijbiomac.2018.05.125
  30. Linton SM, Greenway P. Presence and properties of cellulase and hemicellulase enzymes of the gecarcinid land crabs Gecarcoidea natalis and Discoplax hirtipes. The J. Exp. Biol. 207: 4095-4104 (2004) https://doi.org/10.1242/jeb.01252
  31. Macdonald, A. G. , Martinac, B. , Bartlett, D. H. High pressure experiments with porins from the barophile Photobacterium profundum SS9, Progr. Biotechnol. 19: 311-316 (2002)
  32. Montilla A, Ruiz-Matute AI, Corzo N, Giacomini C, Irazoqui G. Enzymatic generation of chitooligosaccharides from chitosan using soluble and immobilizedglycosyltransferase (Branchzyme). J. Agric. Food Chem. 61: 10360-10367 (2013) https://doi.org/10.1021/jf403321r
  33. Park JK, Choi DJ, Kim SM, Choi HN, Park JW, Jang SJ, Choo YK, Park YI. Purification and characterization of a polysialic acid-specific sialidase from Pseudomonas fluorescens JK-0412, Biotechnol. Bioprocess Eng. 17: 526-537 (2012) https://doi.org/10.1007/s12257-011-0495-7
  34. Park JK, Chung MJ, Choi HN, Park YI. Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity. Int. J. Mol. Sci. 12: 266-277 (2011) https://doi.org/10.3390/ijms12010266
  35. Park JK, Morita K, Fukumoto I, Yamasaki Y, Nakagawa T, Kawamukai M, Matsuda H. Purification and characterization of the chitinase (ChiA) from Enterobacter sp. G-1, Biosci. Biotechnol. Biochem. 61: 684-689 (1997) https://doi.org/10.1271/bbb.61.684
  36. Park JK, Shimono K, Ochiai N, Shigeru K, Kurita M, Ohta Y, Tanaka K, Matsuda H, Kawamukai M. Purification, characterization, and gene analysis of a chitosanase (ChoA) from Matsuebacter chitosanotabidus 3001, J. Bacteriol. 181: 6642-6649 (1999) https://doi.org/10.1128/JB.181.21.6642-6649.1999
  37. Park YM, Ghim SY. Enhancement of the activity and pH-performance of chitosanase from Bacillus cereus strains by DNA shuffling. Biotechnol. Lett. 31: 1463e1467 (2009) https://doi.org/10.1007/s10529-009-0017-2
  38. Park JK, Keyhani NO, Roseman S. Chitin catabolism in the marine bacterium Vibrio furnissii: Identification, molecular cloning, and characterization of a N,N′-diacetylchitobiose phosphorylase. J. Biol. Chem. 275: 33077-33083 (2000) https://doi.org/10.1074/jbc.M001042200
  39. Park JK, Wang L-X, Patel HV, Roseman S. Molecular cloning and characterization of a unique beta-glucosidase from Vibrio cholerae. J. Biol. Chem. 277: 29555-29560 (2002) https://doi.org/10.1074/jbc.M202978200
  40. Park JK, Wang L-X, Roseman S. Isolation of a glucosamine-specific kinase, a unique enzyme of Vibrio cholerae, J. Biol. Chem. 277: 15573-15578 (2002) https://doi.org/10.1074/jbc.M107953200
  41. Petersen L, Ardevol A, Rovira C, Reilly PJ. Mechanism of cellulose hydrolysis by inverting GH8 endoglucanases: A QM/MM metadynamics study. J. Phys. Chem. B 113: 7331-7339 (2009) https://doi.org/10.1021/jp811470d
  42. Rinaudo M, Milas M, Le Dung P. Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. Int. J. Biol. Macromol. 15: 281-285 (1993) https://doi.org/10.1016/0141-8130(93)90027-J
  43. Robb FT, Park JB, Adams MWW. Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium, Pyrococcus furiosus. Bioch. Biophys. Acta, 1120: 267-272 (1992) https://doi.org/10.1016/0167-4838(92)90247-B
  44. Sakairi N, Nishi N, Tokura S. Cyclodextrin-linked chitosan: synthesis and inclusion complexation ability. In:El-Nokaly MA, Soini HA, editors. Polysaccharide applications: cosmetics and pharmaceuticals, ACS Symposium Series 737: 68-84 (1999)
  45. Sano H, Matsukubo T, Shibasaki K, Itoi H, Takaesu Y. Inhibition of adsorption of oral Streptococci to saliva treated hydroxyapatite by chitin derivatives. Bull. Tokyo Dent. Coll. 32: 9-17 (1991)
  46. Sarasam AR, Brown P, Khajotia SS, Dmytryk JJ, Madihally SV. Antibacterial activity of chitosan-based matrices on oral pathogens. J. Mater. Sci. Mater. Med. 19: 1083-1090 (2008) https://doi.org/10.1007/s10856-007-3072-z
  47. Shen KT, Chen MH, Chan HY, Jeng JH, Wang YJ. Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem. Toxicol. 47: 1864-1871 (2009) https://doi.org/10.1016/j.fct.2009.04.044
  48. Sinha S, Dhakate SR, Kumar P, Mathur RB, Tripathi P, Chand S. Electrospun poly-acrylonitrile nanofibrous membranes for chitosanase immobilization and its application in selective production of chitooligosaccharides. Biores. Technol. 115: 152-157 (2012) https://doi.org/10.1016/j.biortech.2011.11.101
  49. Song JY, Alnaeeli M, Park JK. Efficient digestion of chitosan using chitosanase immobilized onsilica-gel for the production of multisize chitooligosaccharides. Proc. Biochem. 49: 2107-2113 (2014) https://doi.org/10.1016/j.procbio.2014.09.003
  50. Tanabe T, Morinaga K, Fukamizo T, Mitsutomi M. Novel chitosanase from Streptomyces griseus HUT 6037 with transglycosylation activity. Biosci. Biotechnol. Biochem. 67: 354-364 (2003) https://doi.org/10.1271/bbb.67.354
  51. Thomas L, Joseph A, Gottumukkala, LD. Xylanase and cellulase systems of Clostridium sp.: An insight on molecular approaches for strain improvement. Biores. Technol. 158: 343-350 (2014) https://doi.org/10.1016/j.biortech.2014.01.140
  52. Tomida H, Fujii T, Furutani N, Michihara A, Yasufuku T, Akasaki K, Maruyama T, Otagiri M, Gebicki JM, Anraku M. Antioxidant properties of some different molecular weight chitosans. Carbohydr. Res.,344: 1690-1696 (2009) https://doi.org/10.1016/j.carres.2009.05.006
  53. Van-Thuoc D, Huu-Phong T, Minh-Khuong D, Hatti-Kaul R. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production by a moderate halophile Yangia sp. ND199 using glycerol as a carbon source. Appl. Biochem. Biotechnol. 75: 3120-3132 (2015)
  54. Wang SL, Peng JH, Liang TW, Liu KC. Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydr. Res. 343: 1316-1323 (2008) https://doi.org/10.1016/j.carres.2008.03.030
  55. Wang SL, Tseng WN, Liang TW. Biodegradation of shellfish wastes and production of chitosanases by a squid pen-assimilating bacterium, Acinetobacter calcoaceticus TKU024. Biodegrad. 22: 939-948 (2011) https://doi.org/10.1007/s10532-011-9453-5
  56. Yang F, Luan B, Sun Z, Yang C, Yu Z, Li X. Application of chitooligosaccharides as antioxidants in beer to improve the flavour stability by protecting against beer staling during storage. Biotechnol. Lett. 39: 305-310 (2017) https://doi.org/10.1007/s10529-016-2248-3
  57. Zhao X, Gänzle MG. Genetic and phenotypic analysis of carbohydrate metabolism and transport in Lactobacillus reuteri. Int. J. Food Microbiol. 272: 12-21 (2018) https://doi.org/10.1016/j.ijfoodmicro.2018.02.021
  58. Zhao H, Wu B, Wu H, Su L, Pang J, Yang T, Liu Y. Protective immunity in rats by intranasal immunization with Streptococcus mutans glucan-binding protein D encapsulated into chitosancoated poly(lactic-co-glycolic acid) microspheres. Biotechnol. Lett. 28: 1299-1304 (2006) https://doi.org/10.1007/s10529-006-9086-7
  59. Zheng B, Wen ZS, Huang YJ, Xia MS, Xiang XW, Qu YL. Molecular weight-dependent immunostimulative activity of low molecular weight chitosan via regulating NF-KB and AP-1 signaling pathways in RAW264.7 macrophages. Mar. Drugs 14: E169 (2016) https://doi.org/10.3390/md14090169
  60. Zitouni M, Fortin M, Scheerle RK, Letzel T, Matteau D, Rodrigue S. Brzezinski R. Biochemical and molecular characterization of a thermostable chitosanase produced by the strain Paenibacillus sp. 1794 newly isolated from compost. Appl. Microbiol. Biotechnol. 97: 5801-5813 (2013) https://doi.org/10.1007/s00253-012-4483-4