• Title/Summary/Keyword: Antifungal drugs

Search Result 80, Processing Time 0.033 seconds

Bovine dermatophytosis and susceptibility of the isolates to antifungal drugs (소 피부사상균증의 발생상황 및 분리균의 약제감수성)

  • 오강희;박노찬;도재철;임소정;박진희
    • Korean Journal of Veterinary Service
    • /
    • v.26 no.1
    • /
    • pp.57-65
    • /
    • 2003
  • The present study was conducted to examine the outbreak state of bovine dermatophytosis in 14 farms(4 dairy farms, 10 Korean indigenous cattle farms) in Gyeongbuk province from November 2000 to November 2001. The causative agents of dermatophytosis was identified by mycological examination. Antifungal susceptibility test of 26 isolates was performed by agar dilution method, using 5 antifungal drugs. Prevalence of bovine dermatophytosis was found to be 13.5%(90/665) in dairy cattle farms and 14.5%(220/1,520) in Korean indigenous cattle farms. The most common age at which this disease occurred was 2-12 months. This disease usually occurred from winter to spring and the occurrence subsequently decreased in the summer. But 4 Korean indigenous cattle farms with poorly hygienic status were occurred all the year round. The causative agent was identified as Trichophyton verrucosum exclusively in these case. Antifungal susceptibility test of T verrucosum (26 strains) was performed by agar dilution method, using 5 antifungal drugs including tolnaftate, griseofulvin, ketoconazole, amphotericin B and terbinafine. All isolates were highly sensitive to 5 antifungal drugs (geometric mean MICs 0.004∼0.032 $\mu\textrm{g}$/$m\ell$). The isolates were the most sensitive to especially tolnaftate.

Antifungal Actions of Crude Drug Water Extracts on Candida albicans(I) (Candida albicans에 대한 생약의 항진균성에 관한 연구(I))

  • Yoo, Seung-Cho;Suh, Jung-Sik
    • Korean Journal of Pharmacognosy
    • /
    • v.5 no.3
    • /
    • pp.147-154
    • /
    • 1974
  • Some crude drugs in ancient literatures have been used as traditional therapeutic agent of leucorrhea mainly caused by Trichomonas vaginalis and Candida albicans. Sixty six kinds of crude drugs in ancient literatures and ten constituents were selected as sample drugs. Trichomycin standard was tested to compare with the above drugs. To determine the anti-fungal effect of these drugs on Candida albicans Yu 1200, a test organism, screening test was conducted. Antifungal activities of crude drug water extracts were observed by means of two test methods : firstly through the agar slant method and secondly the counting chamber method which was used for acknowledged drug agents upon the result of the agar slant method. And in order to improve the fungicidal effect, the organisms were stained with 0.02% methylene blue solution. The results of the above test indicated that Fritillariae Rhizoma has antifungal action in the concentration of 310mcg/ml, Coptidis Rhizoma in 620mcg/ml, Meliae Cortex, Scutellariae Radix both in 5,000mcg/ml. Baicalin, catechol among the pure isolated constituents inhibited in the range of 50mcg/ml. This score was based on 50% inhibition in comparison with amounts of control organisms. Rhei Rhizoma, Mori Radicis Cortex, Linderae Radix, and Amomi globosi Fructus showed the antifungal effect moderately in 5,000mcg/ml, and baicalein and pectolinarin in 50mcg/ml in the limit of between 35% and 50% antifungal activity. Staining with 0.02% methylene blue showed that any of the crude drug extracts was unable to stain the cells, but trichomycin in 0.86unit/ml able to stain 12% of the cells. This result means that crude drugs probably do not have fungicidal but fungistatic action.

  • PDF

Novel Approaches for Efficient Antifungal Drug Action

  • Lee, Heejeong;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1771-1781
    • /
    • 2018
  • The emergence of multidrug-resistant microorganisms, as well as fungal infectious diseases that further threaten health, especially in immunodeficient populations, is a major global problem. The development of new antifungal agents in clinical trials is inferior to the incidence of drug resistance, and the available antifungal agents are restricted. Their mechanisms aim at certain characteristics of the fungus in order to avoid biological similarities with the host. Synthesis of the cell wall and ergosterol are mainly targeted in clinical use. The need for new approaches to antifungal therapeutic agents or development alternatives has increased. This review explores new perspectives on mechanisms to effectively combat fungal infections and effective antifungal activity. The clinical drug have a common feature that ultimately causes caspase-dependent cell death. The drugs-induced cell death pathway is associated with mitochondrial dysfunction, including mitochondrial membrane depolarization and cytochrome c release. This mechanism of action also reveals antimicrobial peptides, the primary effector molecules of innate systems, to highlight new alternatives. Furthermore, drug combination therapy is suggested as another strategy to combat fungal infection. The proposal for a new approach to antifungal agents is not only important from a basic scientific point of view, but will also assist in the selection of molecules for combination therapy.

Imidazole Antifungal Drugs Inhibit the Cell Proliferation and Invasion of Human Breast Cancer Cells

  • Bae, Sung Hun;Park, Ju Ho;Choi, Hyeon Gyeom;Kim, Hyesook;Kim, So Hee
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.494-502
    • /
    • 2018
  • Breast cancer is currently the most prevalent cancer in women, and its incidence increases every year. Azole antifungal drugs were recently found to have antitumor efficacy in several cancer types. They contain an imidazole (clotrimazole and ketoconazole) or a triazole (fluconazole and itraconazole) ring. Using human breast adenocarcinoma cells (MCF-7 and MDA-MB-231), we evaluated the effects of azole drugs on cell proliferation, apoptosis, cell cycle, migration, and invasion, and investigated the underlying mechanisms. Clotrimazole and ketoconazole inhibited the proliferation of both cell lines while fluconazole and itraconazole did not. In addition, clotrimazole and ketoconazole inhibited the motility of MDA-MB-231 cells and induced $G_1$-phase arrest in MCF-7 and MDA-MB-231 cells, as determined by cell cycle analysis and immunoblot data. Moreover, Transwell invasion and gelatin zymography assays revealed that clotrimazole and ketoconazole suppressed invasiveness through the inhibition of matrix metalloproteinase 9 in MDA-MB-231 cells, although no significant changes in invasiveness were observed in MCF-7 cells. There were no significant changes in any of the observed parameters with fluconazole or itraconazole treatment in either breast cancer cell line. Taken together, imidazole antifungal drugs showed strong antitumor activity in breast cancer cells through induction of apoptosis and $G_1$ arrest in both MCF-7 and MDA-MB-231 cells and suppression of invasiveness via matrix metalloproteinase 9 inhibition in MDA-MB-231 cells. Imidazole drugs have well-established pharmacokinetic profiles and known toxicity, which can make these generic drugs strong candidates for repositioning as antitumor therapies.

Real-world Prescribing Patterns of Antifungal drugs in Patients with Aspergillosis (국내 아스페르길루스증에 대한 항진균제 처방 현황)

  • Sangsu Youm;Pusoon Chun
    • Korean Journal of Clinical Pharmacy
    • /
    • v.33 no.2
    • /
    • pp.113-121
    • /
    • 2023
  • Background: Globally, the number of patients with aspergillosis is increasing, and the mortality rate remains high. This study aimed to investigate prescribing patterns of antifungal drugs for patients with aspergillosis in South Korea using real-world data. Methods: This retrospective cross-sectional study was performed using National Patient Sample (NPS) data collected by the Health Insurance Review and Assessment Service (HIRA) during 2011-2020. The use of antifungal drugs in patients with aspergillosis was investigated. Results:A total of 1374 patients were identified: 333 patients with invasive pulmonary aspergillosis (IPA) (24.2%), 436 patients with other PA (31.7%), 73 patients with other forms of aspergillosis (5.3%), and 532 patients with unspecified aspergillosis (38.7%). The odds of receiving an antifungal prescription were higher for IPA than for other PA (aOR, 0.233; p<0.001), and higher for hematologic malignancies than for respiratory disorders other than cancer or infections (aOR, 10.018; p<0.001). During each hospitalization period, 56.1% (97/173) and 6.4% (11/173) of IPA hospitalizations received voriconazole and itraconazole monotherapy, respectively, whereas 44.3% (27/61) and 27.9% (17/61) of other PA hospitalizations received itraconazole and voriconazole monotherapy, respectively. Among outpatients with IPA, 67.5% (85/126) and 26.2% (33/126) received voriconazole and itraconazole alone, respectively, whereas among outpatients with other PA, 86.1% (68/79) and 12.7% (10/79) received itraconazole and voriconazole alone, respectively, during the year. Conclusion: In Korea, voriconazole monotherapy was preferred in IPA inpatients, and itraconazole monotherapy was preferred in other PA inpatients. In the ambulatory care settings for IPA and other PA, itraconazole monotherapy was preferred.

Identification and Functional Characterization of a Cryptococcus neoformans UPC2 Homolog

  • Kim, Nam-Kyun;Han, Kyung-Hwan;Jung, Won-Hee
    • Mycobiology
    • /
    • v.38 no.3
    • /
    • pp.215-218
    • /
    • 2010
  • Azoles are currently the most widely used class of antifungal drugs clinically, and are effective for treating fungal infections. Target site of azoles is ergosterol biosynthesis in fungal cell membrane, which is absent in the mammalian host. However, the development of resistance to azole treatments in the fungal pathogen has become a significant challenge. Here, we report the identification and functional characterization of a UPC2 homolog in the human pathogen Cryptococcus neoformans. UPC2 plays roles in ergosterol biosynthesis, which is also affected by the availability of iron in Saccharomyces cerevisiae and Candida albicans. C. neoformans mutants lacking UPC2 were constructed, and a number of phenotypic characteristics, including antifungal susceptibility and iron utilization, were analyzed. No differences were found between the mutant phenotypes and wild type, suggesting that the role of C. neoformans UPC2 homolog may be different from those in S. cerevisiae and C. albicans, and that the gene may have a yet unknown function.

The Antifungal Activity of Bee Venom against Dermatophytes

  • Yu, A-Reum;Kim, Jum-Ji;Park, Gil-Sun;Oh, Su-Mi;Han, Chung-Sub;Lee, Mi-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.1
    • /
    • pp.7-11
    • /
    • 2012
  • The antifungal activities of the bee venom against Trichophyton mentagrophytes and Trichophyton rubrum were determined by using modified broth dilution assay. The most common dermatophytes, named T. mentagrophytes and T. rubrum, were known to cause a variety of cutaneous infections in humans and animals. The bee venom exhibited prominent antifungal activities against the two dermatophytes tested in this investigation. Moreover, the antifungal activities of the bee venom were much stronger than that of fluconazole, one of the commercial antifungal drugs used in the treatment and prevention of superficial and systemic fungal infections. The result suggests that bee venom could be developed as a natural antifungal drug.

In Vitro Antifungal Activities of Amphotericin B, Fluconazole, Itraconazole, Terbinafine, Caspofungin, Voriconazole, and Posaconazole against 30 Clinical Isolates of Cryptococcus neoformans var. neoformancs

  • Lee, Young-Ki;Fothergill, Annette W.
    • Mycobiology
    • /
    • v.31 no.2
    • /
    • pp.95-98
    • /
    • 2003
  • Aantifungal agents were tested against 30 clinical isolates of Cryptococcus neoformans var. neoformans using the NCCLS method(M27-A2). Posaconazole, itraconazole and amphotericin B had lower MIC than the remaining four antifungal agents. The MIC result for posaconazole was over 220-fold lower active than fluconazole. Fluconazole MICs for most isolates fell within the dose-dependant range. The overall MIC ranges and $MIC_{50}s$ were amphotericin B(0.03-0.25; 0.25), fluconazole(0.5-64; 16), itraconazole(0.015-1; 0.125), terbinafine(0.06->2; 1), caspofungin(8-32; 32), voriconazole(0.015-0.5; 0.25), and posaconazole(0.015-0.25; 0.06 ${\mu}g/ml$), respectively. In conclusion, the $MIC_{50}s$ of these drugs did not exhibit any sign of an upward shift with the exception of fluconazole and tendency cross-resistance between the seven drugs was not observed. We conclude that in vitro resistance to antifungal agents has not significantly changed despite the recent wide-spread use of triazoles for long-term treatment of Cryptococcal meningitis.

Inhibition of the Aspergillus flavus Growth and Aflatoxin B1 Contamination on Pistachio Nut by Fengycin and Surfactin-Producing Bacillus subtilis UTBSP1

  • Farzaneh, Mohsen;Shi, Zhi-Qi;Ahmadzadeh, Masoud;Hu, Liang-Bin;Ghassempour, Alireza
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.209-215
    • /
    • 2016
  • In this study, the treatment of pistachio nuts by Bacillus subtilis UTBSP1, a promising isolate to degrade aflatoxin B1 (AFB1), caused to reduce the growth of Aspergillus flavus R5 and AFB1 content on pistachio nuts. Fluorescence probes revealed that the cell free supernatant fluid from UTBSP1 affects spore viability considerably. Using high-performance liquid chromatographic (HPLC) method, 10 fractions were separated and collected from methanol extract of cell free supernatant fluid. Two fractions showed inhibition zones against A. flavus. Mass spectrometric analysis of the both antifungal fractions revealed a high similarity between these anti-A. flavus compounds and cyclic-lipopeptides of surfactin, and fengycin families. Coproduction of surfactin and fengycin acted in a synergistic manner and consequently caused a strong antifungal activity against A. flavus R5. There was a positive significant correlation between the reduction of A. flavus growth and the reduction of AFB1 contamination on pistachio nut by UTBSP1. The results indicated that fengycin and surfactin-producing B. subtilis UTBSP1 can potentially reduce A. flavus growth and AFB1 content in pistachio nut.

Synergistic Effect of Polygodial with Imidazole Drugs on the Antifungal Activity (천연물 Polygodial과 Imidazole계 화합물의 병용에 의한 항진균 활성의 증진)

  • 이상화;이재란;김창진
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.221-227
    • /
    • 1999
  • The fungistatic and fungicidal activities of amphotericin B, fluconazole, miconazole, econazole, and 5-fluorocytosine against Saccharomyces cerevisiae were estimated in the presence of 1/2 minimum inhibitory concentration (MIC) and 1/2 minimum fungicidal concentration (MFC) of polygodial, respectively. Among them, the antifungal activities of miconazoles by polygodial was still shown against several yeast-like fungi including Candida albicans, Candida utilis, Cryptococcus neoformans, except for Candida krusei. The combination of polygodial with imidazole drugs against Saccharomyces cerevisiae was further examined using the macrobroth dilution checkerboard method. The fractional inhibitory concentration (FIC) and the fractional fungicidal concentration (FFC) index between polygodial and miconazole were 0.16 and 0.19, while the combination of polygodial with econazole exhibited the FIC index of 0.19 and the FFC of 0.25, respectively. These results suggest that polygodial and the imidazoles on the fungistatic and fungicidal action are highly synergistic.

  • PDF