DOI QR코드

DOI QR Code

Identification and Functional Characterization of a Cryptococcus neoformans UPC2 Homolog

  • Kim, Nam-Kyun (Department of Biotechnology, Chung-Ang University) ;
  • Han, Kyung-Hwan (Department of Biotechnology, Chung-Ang University) ;
  • Jung, Won-Hee (Department of Biotechnology, Chung-Ang University)
  • Received : 2010.07.12
  • Accepted : 2010.07.20
  • Published : 2010.09.30

Abstract

Azoles are currently the most widely used class of antifungal drugs clinically, and are effective for treating fungal infections. Target site of azoles is ergosterol biosynthesis in fungal cell membrane, which is absent in the mammalian host. However, the development of resistance to azole treatments in the fungal pathogen has become a significant challenge. Here, we report the identification and functional characterization of a UPC2 homolog in the human pathogen Cryptococcus neoformans. UPC2 plays roles in ergosterol biosynthesis, which is also affected by the availability of iron in Saccharomyces cerevisiae and Candida albicans. C. neoformans mutants lacking UPC2 were constructed, and a number of phenotypic characteristics, including antifungal susceptibility and iron utilization, were analyzed. No differences were found between the mutant phenotypes and wild type, suggesting that the role of C. neoformans UPC2 homolog may be different from those in S. cerevisiae and C. albicans, and that the gene may have a yet unknown function.

Keywords

References

  1. Daum G, Lees ND, Bard M, Dickson R. Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 1998;14:1471-510. https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1471::AID-YEA353>3.0.CO;2-Y
  2. Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 1999;12:501-17.
  3. Howell SA, Mallet AI. A novel lanosterol isomer produced in response to azole antifungals. J Steroid Biochem 1990; 36:505-6. https://doi.org/10.1016/0022-4731(90)90095-A
  4. Mitchell TG, Perfect JR. Cryptococcosis in the era of AIDS: 100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 1995;8:515-48.
  5. Jung WH, Sham A, White R, Kronstad JW. Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans. PLoS Biol 2006;4:e410. https://doi.org/10.1371/journal.pbio.0040410
  6. Vartivarian SE, Anaissie EJ, Cowart RE, Sprigg HA, Tingler MJ, Jacobson ES. Regulation of cryptococcal capsular polysaccharide by iron. J Infect Dis 1993;167:186-90. https://doi.org/10.1093/infdis/167.1.186
  7. Bose I, Reese AJ, Ory JJ, Janbon G, Doering TL. A yeast under cover: the capsule of Cryptococcus neoformans. Eukaryot Cell 2003;2:655-63. https://doi.org/10.1128/EC.2.4.655-663.2003
  8. Zhang S, Hacham M, Panepinto J, Hu G, Shin S, Zhu X, Williamson PR. The Hsp70 member, Ssa1, acts as a DNAbinding transcriptional co-activator of laccase in Cryptococcus neoformans. Mol Microbiol 2006;62:1090-101. https://doi.org/10.1111/j.1365-2958.2006.05422.x
  9. Zaragoza O, Alvarez M, Telzak A, Rivera J, Casadevall A. The relative susceptibility of mouse strains to pulmonary Cryptococcus neoformans infection is associated with pleiotropic differences in the immune response. Infect Immun 2007;75:2729-39. https://doi.org/10.1128/IAI.00094-07
  10. Jung WH, Kronstad JW. Iron and fungal pathogenesis: a case study with Cryptococcus neoformans. Cell Microbiol 2008; 10:277-84. https://doi.org/10.1111/j.1462-5822.2007.01077.x
  11. Wang Y, Aisen P, Casadevall A. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun 1995;63:3131-6.
  12. Casadevall A, Rosas AL, Nosanchuk JD. Melanin and virulence in Cryptococcus neoformans. Curr Opin Microbiol 2000;3:354-8. https://doi.org/10.1016/S1369-5274(00)00103-X
  13. Jung WH, Kronstad JW. Iron and fungal pathogenesis: a case study with Cryptococcus neoformans. Cell Microbiol 2008; 10:277-84. https://doi.org/10.1111/j.1462-5822.2007.01077.x
  14. Gomez BL, Nosanchuk JD. Melanin and fungi. Curr Opin Infect Dis 2003;16:91-6. https://doi.org/10.1097/00001432-200304000-00005
  15. Polacheck I, Hearing VJ, Kwon-Chung KJ. Biochemical studies of phenoloxidase and utilization of catecholamines in Cryptococcus neoformans. J Bacteriol 1982;150:1212-20.
  16. Jacobson ES, Compton GM. Discordant regulation of phenoloxidase and capsular polysaccharide in Cryptococcus neoformans. J Med Vet Mycol 1996;34:289-91. https://doi.org/10.1080/02681219680000491
  17. Salas SD, Bennett JE, Kwon-Chung KJ, Perfect JR, Williamson PR. Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. J Exp Med 1996;184:377-86. https://doi.org/10.1084/jem.184.2.377
  18. Tangen KL, Jung WH, Sham AP, Lian T, Kronstad JW. The iron- and cAMP-regulated gene SIT1 influences ferrioxamine B utilization, melanization and cell wall structure in Cryptococcus neoformans. Microbiology 2007;153:29-41. https://doi.org/10.1099/mic.0.2006/000927-0
  19. Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, Heitman J. Calcineurin is required for virulence of Cryptococcus neoformans. Embo J 1997;16:2576-89. https://doi.org/10.1093/emboj/16.10.2576
  20. Kraus PR, Nichols CB, Heitman J. Calcium- and calcineurinindependent roles for calmodulin in Cryptococcus neoformans morphogenesis and high-temperature growth. Eukaryot Cell 2005;4:1079-87. https://doi.org/10.1128/EC.4.6.1079-1087.2005
  21. Vik A, Rine J. Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 2001;21:6395-405. https://doi.org/10.1128/MCB.21.19.6395-6405.2001
  22. MacPherson S, Akache B, Weber S, De Deken X, Raymond M, Turcotte B. Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother 2005;49:1745-52. https://doi.org/10.1128/AAC.49.5.1745-1752.2005
  23. Jung WH, Hu G, Kuo W, Kronstad JW. Role of ferroxidases in iron uptake and virulence of Cryptococcus neoformans. Eukaryot Cell 2009;8:1511-20. https://doi.org/10.1128/EC.00166-09
  24. Li L, Bagley D, Ward DM, Kaplan J. Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast. Mol Cell Biol 2008;28:1326-37. https://doi.org/10.1128/MCB.01219-07
  25. Davidson RC, Blankenship JR, Kraus PR, de Jesus Berrios M, Hull CM, D'Souza C, Wang P, Heitman J. A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 2002;148:2607-15. https://doi.org/10.1099/00221287-148-8-2607
  26. Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Domínguez Y, Scazzocchio C. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 2004;41:973-81. https://doi.org/10.1016/j.fgb.2004.08.001
  27. Toffaletti DL, Rude TH, Johnston SA, Durack DT, Perfect JR. Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol 1993;175:1405-11. https://doi.org/10.1128/jb.175.5.1405-1411.1993
  28. Hausmann A, Samans B, Lill R, Muhlenhoff U. Cellular and mitochondrial remodeling upon defects in iron-sulfur protein biogenesis. J Biol Chem 2008;283:8318-30. https://doi.org/10.1074/jbc.M705570200
  29. Shakoury-Elizeh M, Protchenko O, Berger A, Cox J, Gable K, Dunn TM, Prinz WA, Bard M, Philpott CC. Metabolic response to iron deficiency in Saccharomyces cerevisiae. J Biol Chem 2010;285:14823-33. https://doi.org/10.1074/jbc.M109.091710
  30. Li L, Kaplan J. Characterization of yeast methyl sterol oxidase (ERG25) and identification of a human homologue. J Biol Chem 1996;271:16927-33. https://doi.org/10.1074/jbc.271.28.16927
  31. Prasad T, Chandra A, Mukhopadhyay CK, Prasad R. Unexpected link between iron and drug resistance of Candida spp.: iron depletion enhances membrane fluidity and drug diffusion, leading to drug-susceptible cells. Antimicrob Agents Chemother 2006;50:3597-606. https://doi.org/10.1128/AAC.00653-06
  32. Jung WH, Sham A, Lian T, Singh A, Kosman DJ, Kronstad JW. Iron source preference and regulation of iron uptake in Cryptococcus neoformans. PLoS Pathog 2008;4:e45. https://doi.org/10.1371/journal.ppat.0040045

Cited by

  1. for Antifungal Drug Target Prioritization vol.6, pp.2, 2015, https://doi.org/10.1128/mBio.02334-14