Browse > Article
http://dx.doi.org/10.4062/biomolther.2018.042

Imidazole Antifungal Drugs Inhibit the Cell Proliferation and Invasion of Human Breast Cancer Cells  

Bae, Sung Hun (College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University)
Park, Ju Ho (College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University)
Choi, Hyeon Gyeom (Department of Systems Biotechnology, Konkuk Institute of Technology (KIT), Konkuk University)
Kim, Hyesook (Detroit R&D Inc)
Kim, So Hee (College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University)
Publication Information
Biomolecules & Therapeutics / v.26, no.5, 2018 , pp. 494-502 More about this Journal
Abstract
Breast cancer is currently the most prevalent cancer in women, and its incidence increases every year. Azole antifungal drugs were recently found to have antitumor efficacy in several cancer types. They contain an imidazole (clotrimazole and ketoconazole) or a triazole (fluconazole and itraconazole) ring. Using human breast adenocarcinoma cells (MCF-7 and MDA-MB-231), we evaluated the effects of azole drugs on cell proliferation, apoptosis, cell cycle, migration, and invasion, and investigated the underlying mechanisms. Clotrimazole and ketoconazole inhibited the proliferation of both cell lines while fluconazole and itraconazole did not. In addition, clotrimazole and ketoconazole inhibited the motility of MDA-MB-231 cells and induced $G_1$-phase arrest in MCF-7 and MDA-MB-231 cells, as determined by cell cycle analysis and immunoblot data. Moreover, Transwell invasion and gelatin zymography assays revealed that clotrimazole and ketoconazole suppressed invasiveness through the inhibition of matrix metalloproteinase 9 in MDA-MB-231 cells, although no significant changes in invasiveness were observed in MCF-7 cells. There were no significant changes in any of the observed parameters with fluconazole or itraconazole treatment in either breast cancer cell line. Taken together, imidazole antifungal drugs showed strong antitumor activity in breast cancer cells through induction of apoptosis and $G_1$ arrest in both MCF-7 and MDA-MB-231 cells and suppression of invasiveness via matrix metalloproteinase 9 inhibition in MDA-MB-231 cells. Imidazole drugs have well-established pharmacokinetic profiles and known toxicity, which can make these generic drugs strong candidates for repositioning as antitumor therapies.
Keywords
Breast cancer; Imidazole; Cell proliferation; Apoptosis; Invasion; MMP9;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aftab, B. T., Dobromilskaya, I., Liu, J. O. and Rudin, C. M. (2011) Itraconazole inhibits angiogenesis and tumor growth in non-small cell lung cancer. Cancer Res. 71, 6764-6772.   DOI
2 Antonarakis, E. S., Heath, E. I., Smith, D. C., Rathkopf, D., Blackford, A. L., Danila, D. C., King, S., Frost, A., Ajiboye, A. S., Zhao, M., Mendonca, J., Kachhap, S. K., Rudek, M. A. and Carducci, M. A. (2013) Repurposing itraconazole as a treatment for advanced prostate cancer: a noncomparative randomized phase II trial in men with metastatic castration-resistant prostate cancer. Oncologist 18, 163-173.   DOI
3 Baroniya, S., Anwer, Z., Sharma, P. K., Dudhe, R. and Kumar, N. (2010) Recent advancement in imidazole as anticancer agents: a review. Der Pharmacia Sinica 1, 172-182.
4 Bockstaele, L., Coulonval, K., Kooken, H., Paternot, S. and Roger, P. P. (2006) Regulation of CDK4. Cell Div. 1, 25.   DOI
5 Bray, F., Ren, J. S., Masuyer, E. and Ferlay, J. (2013) Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int. J. Cancer 132, 1133-1145.   DOI
6 Cook, K. L., Shajahan, A. N., Warri, A., Jin, L., Hilakivi-Clarke. L. A. and Clarke, R. (2012) Glucose-regulated protein 78 controls crosstalk between apoptosis and autophagy to determine antiestrogen responsiveness. Cancer Res. 72, 3337-3349.   DOI
7 Furtado, C. M., Marcondes, M. C., Sola-Penna, M., de Souza, M. L. and Zancan, P. (2012) Clotrimazole preferentially inhibits human breast cancer cell proliferation, viability and glycolysis. PLoS ONE 7, e30462.   DOI
8 Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D. and Bray, F. (2013) GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. International Agency for Research on Cancer, Lyon, France. Available from: http://globocan.iarc.fr/.
9 Forgue-Lafitte, M. E., Coudray, A. M., Fagot, D. and Mester, J. (1999) Effects of ketoconazole on the proliferation and cell cycle of human cell lines. Cancer Res. 52, 827-6831.
10 Fujita, Y., Kimura, M., Sato, H., Takata, T., Ono, N. and Nishio, K. (2016) Characterization of the cytotoxic activity of [2]rotaxane (TRO-A0001), a novel supramolecular compound, in cancer cells. Arch. Pharm. Res. 39, 825-832.   DOI
11 Furtado, C. M., Marcondes, M. C., Carvalho, R. S., Sola-Penna, M. and Zancan, P. (2015) Phosphatidylinositol-3-kinase as a putative target for anticancer action of clotrimazole. Int. J. Biochem. Cell Biol. 62, 132-141.   DOI
12 Liao, C. L., Lai, K. C., Huang, A. C., Yang, J. S., Lin, J. J., Wu, S. H., Gibson Wood, W., Lin, J. G. and Chung, J. G. (2012) Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/-9, protein kinase B (PKB) and PKC signaling pathways. Food Chem. Toxicol. 50, 1734-1740.   DOI
13 Gong, Y., Chippada-Venkata, U. D. and Oh, W. K. (2014) Roles of matrix metalloproteinases and their natural inhibitors in prostate cancer progression. Cancers (Basel) 6, 1298-1327.   DOI
14 Ho, Y. S., Tsai, P. W., Yu, C. F., Liu, H. L., Chen, R. J. and Lin, J. K. (1998) Ketoconazole-induced apoptosis through p53-dependent pathway in human colorectal and hepatocellular carcinoma cell lines. Toxicol. Appl. Pharmacol. 153, 39-47.   DOI
15 Hulkower, K. I. and Herber, R. L. (2011) Cell migration and invasion assays as tools for drug discovery. Pharmaceutics 3, 107-124.   DOI
16 Kim, J., Tang, J. Y., Gong, R., Kim, J., Lee, J. J., Clemons, K. V., Chong, C. R., Chang, K. S., Fereshteh, M., Gardner, D., Reya, T., Liu, J. O., Epstein, E. H., Stevens, D. A. and Beachy, P. A. (2010) Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell 17, 388-399.   DOI
17 Li, D. H., Hu, P., Xu, S. T., Fang, C. Y., Tang, S., Wang, X. Y., Sun, X. Y., Li, H., Xu, Y., Gu, X. K. and Xu, J. Y. (2017) Lasiokaurin derivatives: synthesis, antimicrobial and antitumor biological evaluation, and apoptosis-inducing effects. Arch. Pharm. Res. 40, 796-806.   DOI
18 Lim, S. J., Choi, H. G., Jeon, C. K. and Kim, S. H. (2015) Increased chemoresistance to paclitaxel in the MCF10AT series of human breast epithelial cancer cells. Oncol. Rep. 33, 2023-2030.   DOI
19 Marcondes, M. C., Fernandes, A. C., Itabaiana, I., Jr., de Souza, R. O., Sola-Penna, M. and Zancan, P. (2015) Nanomicellar formulation of clotrimazole improves its antitumor action toward human breast cancer cells. PLoS ONE 10, e0130555.   DOI
20 Mander, S., You, D. J., Park, S., Kim, D. H., Yong, H. J., Kim, D. S., Ahn, C., Kim, Y. H., Seong, J. Y. and Hwang, J. I. (2018) Nafamostat mesilate negatively regulates the metastasis of triple-negative breast cancer cells. Arch. Pharm. Res. 41, 229-242.   DOI
21 Kadavakollu, S., Stailey, C., Kunapareddy, C. S. and White, S. (2014) Clotrimazole as a cancer drug: a short review. Med. Chem. 4, 722-724.
22 Shim, J. S. and Liu, J. O. (2014) Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci. 10, 654-663.   DOI
23 Maurice, M., Pichard, L., Daujat, M., Fabre, I., Joyeux, H., Domergue, J. and Maurel, P. (1992) Effects of imidazole derivatives on cytochrome P-450 from human hepatocytes in primary culture. FASEB J. 6, 752-758.   DOI
24 Ohnishi, T. (2005) The role of the p53 molecule in cancer therapies with radiation and/or hyperthermia. J. Cancer Res. Ther. 1, 147-150.   DOI
25 Pantziarka, P., Sukhatme, V., Bouche, G., Meheus, L. and Sukhatme, V. P. (2015) Repurposing drugs in oncology (ReDO)-itraconazole as an anti-cancer agent. Ecancermedicalscience 9, 521.
26 Steeg, P. S. (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12, 895-904.   DOI
27 Tsubamoto, H., Ueda, T., Inoue, K., Sakata, K., Shibahara, H. and Sonoda, T. (2017) Repurposing itraconazole as an anticancer agent. Oncol. Lett. 14, 1240-1246.   DOI
28 Taplin, M. E., Regan, M. M., Ko, Y. J., Bubley, G. J., Duggan, S. E., Werner, L., Beer, T. M., Ryan, C. W., Mathew, P., Tu, S. M., Denmeade, S. R., Oh, W. K., Sartor, O., Mantzoros, C. S., Rittmaster, R., Kantoff, P. W. and Balk, S. P. (2009) Phase II study of androgen synthesis inhibition with ketoconazole, hydrocortisone, and dutasteride in asymptomatic castration-resistant prostate cancer. Clin. Cancer Res. 15, 7099-7105.   DOI
29 Tran, B. N., Nguyen, H. T., Kim, J. O., Yong, C. S. and Nguyen, C. N. (2017) Combination of a chemopreventive agent and paclitaxel in CD44-targeted hybrid nanoparticles for breast cancer treatment. Arch. Pharm. Res. 40, 1420-1432.   DOI
30 Tripathi, K. D. (2013) Essentials of Medical Pharmacology, 7th ed, p. 791. JP Medical Ltd, London.
31 Zhao, H. G., Zhou, S. L., Lin, Y. Y., Dai, H. F. and Huang, F. Y. (2018) Toxicarioside N induces apoptosis in human gastric cancer SGC-7901 cell by activating the p38MAPK pathway. Arch. Pharm. Res. 41, 71-78.   DOI
32 Vasaitis, T. S., Bruno, R. D. and Njar, V. C. (2011) CYP17 inhibitors for prostate cancer therapy. J. Steroid Biochem. Mol. Biol. 125, 23-31.   DOI
33 Yang, S. F., Chen, M. K., Hsieh, Y. S., Yang, J. S., Zavras, A. I., Hsieh, Y. H., Su, S. C., Kao, T. Y., Chen, P. N. and Chu, S. C. (2010) Antimetastatic effects of Terminalia catappa L. on oral cancer via a down-regulation of metastasis-associated proteases. Food Chem. Toxicol. 48, 1052-1058.   DOI
34 Zhang, R., Pan, X., Huang, Z., Weber, G. F. and Zhang, G. (2011) Osteopontin enhances the expression and activity of MMP-2 via the SDF-1/CXCR4 axis in hepatocellular carcinoma cell lines. PLoS ONE 6, e23831.   DOI