DOI QR코드

DOI QR Code

Imidazole Antifungal Drugs Inhibit the Cell Proliferation and Invasion of Human Breast Cancer Cells

  • Bae, Sung Hun (College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University) ;
  • Park, Ju Ho (College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University) ;
  • Choi, Hyeon Gyeom (Department of Systems Biotechnology, Konkuk Institute of Technology (KIT), Konkuk University) ;
  • Kim, Hyesook (Detroit R&D Inc) ;
  • Kim, So Hee (College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University)
  • Received : 2018.03.05
  • Accepted : 2018.07.17
  • Published : 2018.09.01

Abstract

Breast cancer is currently the most prevalent cancer in women, and its incidence increases every year. Azole antifungal drugs were recently found to have antitumor efficacy in several cancer types. They contain an imidazole (clotrimazole and ketoconazole) or a triazole (fluconazole and itraconazole) ring. Using human breast adenocarcinoma cells (MCF-7 and MDA-MB-231), we evaluated the effects of azole drugs on cell proliferation, apoptosis, cell cycle, migration, and invasion, and investigated the underlying mechanisms. Clotrimazole and ketoconazole inhibited the proliferation of both cell lines while fluconazole and itraconazole did not. In addition, clotrimazole and ketoconazole inhibited the motility of MDA-MB-231 cells and induced $G_1$-phase arrest in MCF-7 and MDA-MB-231 cells, as determined by cell cycle analysis and immunoblot data. Moreover, Transwell invasion and gelatin zymography assays revealed that clotrimazole and ketoconazole suppressed invasiveness through the inhibition of matrix metalloproteinase 9 in MDA-MB-231 cells, although no significant changes in invasiveness were observed in MCF-7 cells. There were no significant changes in any of the observed parameters with fluconazole or itraconazole treatment in either breast cancer cell line. Taken together, imidazole antifungal drugs showed strong antitumor activity in breast cancer cells through induction of apoptosis and $G_1$ arrest in both MCF-7 and MDA-MB-231 cells and suppression of invasiveness via matrix metalloproteinase 9 inhibition in MDA-MB-231 cells. Imidazole drugs have well-established pharmacokinetic profiles and known toxicity, which can make these generic drugs strong candidates for repositioning as antitumor therapies.

Keywords

References

  1. Aftab, B. T., Dobromilskaya, I., Liu, J. O. and Rudin, C. M. (2011) Itraconazole inhibits angiogenesis and tumor growth in non-small cell lung cancer. Cancer Res. 71, 6764-6772. https://doi.org/10.1158/0008-5472.CAN-11-0691
  2. Antonarakis, E. S., Heath, E. I., Smith, D. C., Rathkopf, D., Blackford, A. L., Danila, D. C., King, S., Frost, A., Ajiboye, A. S., Zhao, M., Mendonca, J., Kachhap, S. K., Rudek, M. A. and Carducci, M. A. (2013) Repurposing itraconazole as a treatment for advanced prostate cancer: a noncomparative randomized phase II trial in men with metastatic castration-resistant prostate cancer. Oncologist 18, 163-173. https://doi.org/10.1634/theoncologist.2012-314
  3. Baroniya, S., Anwer, Z., Sharma, P. K., Dudhe, R. and Kumar, N. (2010) Recent advancement in imidazole as anticancer agents: a review. Der Pharmacia Sinica 1, 172-182.
  4. Bockstaele, L., Coulonval, K., Kooken, H., Paternot, S. and Roger, P. P. (2006) Regulation of CDK4. Cell Div. 1, 25. https://doi.org/10.1186/1747-1028-1-25
  5. Bray, F., Ren, J. S., Masuyer, E. and Ferlay, J. (2013) Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int. J. Cancer 132, 1133-1145. https://doi.org/10.1002/ijc.27711
  6. Cook, K. L., Shajahan, A. N., Warri, A., Jin, L., Hilakivi-Clarke. L. A. and Clarke, R. (2012) Glucose-regulated protein 78 controls crosstalk between apoptosis and autophagy to determine antiestrogen responsiveness. Cancer Res. 72, 3337-3349. https://doi.org/10.1158/0008-5472.CAN-12-0269
  7. Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D. and Bray, F. (2013) GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. International Agency for Research on Cancer, Lyon, France. Available from: http://globocan.iarc.fr/.
  8. Forgue-Lafitte, M. E., Coudray, A. M., Fagot, D. and Mester, J. (1999) Effects of ketoconazole on the proliferation and cell cycle of human cell lines. Cancer Res. 52, 827-6831.
  9. Fujita, Y., Kimura, M., Sato, H., Takata, T., Ono, N. and Nishio, K. (2016) Characterization of the cytotoxic activity of [2]rotaxane (TRO-A0001), a novel supramolecular compound, in cancer cells. Arch. Pharm. Res. 39, 825-832. https://doi.org/10.1007/s12272-016-0741-9
  10. Furtado, C. M., Marcondes, M. C., Sola-Penna, M., de Souza, M. L. and Zancan, P. (2012) Clotrimazole preferentially inhibits human breast cancer cell proliferation, viability and glycolysis. PLoS ONE 7, e30462. https://doi.org/10.1371/journal.pone.0030462
  11. Furtado, C. M., Marcondes, M. C., Carvalho, R. S., Sola-Penna, M. and Zancan, P. (2015) Phosphatidylinositol-3-kinase as a putative target for anticancer action of clotrimazole. Int. J. Biochem. Cell Biol. 62, 132-141. https://doi.org/10.1016/j.biocel.2015.03.004
  12. Gong, Y., Chippada-Venkata, U. D. and Oh, W. K. (2014) Roles of matrix metalloproteinases and their natural inhibitors in prostate cancer progression. Cancers (Basel) 6, 1298-1327. https://doi.org/10.3390/cancers6031298
  13. Ho, Y. S., Tsai, P. W., Yu, C. F., Liu, H. L., Chen, R. J. and Lin, J. K. (1998) Ketoconazole-induced apoptosis through p53-dependent pathway in human colorectal and hepatocellular carcinoma cell lines. Toxicol. Appl. Pharmacol. 153, 39-47. https://doi.org/10.1006/taap.1998.8467
  14. Hulkower, K. I. and Herber, R. L. (2011) Cell migration and invasion assays as tools for drug discovery. Pharmaceutics 3, 107-124. https://doi.org/10.3390/pharmaceutics3010107
  15. Kadavakollu, S., Stailey, C., Kunapareddy, C. S. and White, S. (2014) Clotrimazole as a cancer drug: a short review. Med. Chem. 4, 722-724.
  16. Kim, J., Tang, J. Y., Gong, R., Kim, J., Lee, J. J., Clemons, K. V., Chong, C. R., Chang, K. S., Fereshteh, M., Gardner, D., Reya, T., Liu, J. O., Epstein, E. H., Stevens, D. A. and Beachy, P. A. (2010) Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell 17, 388-399. https://doi.org/10.1016/j.ccr.2010.02.027
  17. Li, D. H., Hu, P., Xu, S. T., Fang, C. Y., Tang, S., Wang, X. Y., Sun, X. Y., Li, H., Xu, Y., Gu, X. K. and Xu, J. Y. (2017) Lasiokaurin derivatives: synthesis, antimicrobial and antitumor biological evaluation, and apoptosis-inducing effects. Arch. Pharm. Res. 40, 796-806. https://doi.org/10.1007/s12272-016-0867-9
  18. Liao, C. L., Lai, K. C., Huang, A. C., Yang, J. S., Lin, J. J., Wu, S. H., Gibson Wood, W., Lin, J. G. and Chung, J. G. (2012) Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/-9, protein kinase B (PKB) and PKC signaling pathways. Food Chem. Toxicol. 50, 1734-1740. https://doi.org/10.1016/j.fct.2012.02.033
  19. Lim, S. J., Choi, H. G., Jeon, C. K. and Kim, S. H. (2015) Increased chemoresistance to paclitaxel in the MCF10AT series of human breast epithelial cancer cells. Oncol. Rep. 33, 2023-2030. https://doi.org/10.3892/or.2015.3775
  20. Mander, S., You, D. J., Park, S., Kim, D. H., Yong, H. J., Kim, D. S., Ahn, C., Kim, Y. H., Seong, J. Y. and Hwang, J. I. (2018) Nafamostat mesilate negatively regulates the metastasis of triple-negative breast cancer cells. Arch. Pharm. Res. 41, 229-242. https://doi.org/10.1007/s12272-017-0996-9
  21. Marcondes, M. C., Fernandes, A. C., Itabaiana, I., Jr., de Souza, R. O., Sola-Penna, M. and Zancan, P. (2015) Nanomicellar formulation of clotrimazole improves its antitumor action toward human breast cancer cells. PLoS ONE 10, e0130555. https://doi.org/10.1371/journal.pone.0130555
  22. Maurice, M., Pichard, L., Daujat, M., Fabre, I., Joyeux, H., Domergue, J. and Maurel, P. (1992) Effects of imidazole derivatives on cytochrome P-450 from human hepatocytes in primary culture. FASEB J. 6, 752-758. https://doi.org/10.1096/fasebj.6.2.1371482
  23. Ohnishi, T. (2005) The role of the p53 molecule in cancer therapies with radiation and/or hyperthermia. J. Cancer Res. Ther. 1, 147-150. https://doi.org/10.4103/0973-1482.19594
  24. Pantziarka, P., Sukhatme, V., Bouche, G., Meheus, L. and Sukhatme, V. P. (2015) Repurposing drugs in oncology (ReDO)-itraconazole as an anti-cancer agent. Ecancermedicalscience 9, 521.
  25. Shim, J. S. and Liu, J. O. (2014) Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci. 10, 654-663. https://doi.org/10.7150/ijbs.9224
  26. Steeg, P. S. (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12, 895-904. https://doi.org/10.1038/nm1469
  27. Taplin, M. E., Regan, M. M., Ko, Y. J., Bubley, G. J., Duggan, S. E., Werner, L., Beer, T. M., Ryan, C. W., Mathew, P., Tu, S. M., Denmeade, S. R., Oh, W. K., Sartor, O., Mantzoros, C. S., Rittmaster, R., Kantoff, P. W. and Balk, S. P. (2009) Phase II study of androgen synthesis inhibition with ketoconazole, hydrocortisone, and dutasteride in asymptomatic castration-resistant prostate cancer. Clin. Cancer Res. 15, 7099-7105. https://doi.org/10.1158/1078-0432.CCR-09-1722
  28. Tran, B. N., Nguyen, H. T., Kim, J. O., Yong, C. S. and Nguyen, C. N. (2017) Combination of a chemopreventive agent and paclitaxel in CD44-targeted hybrid nanoparticles for breast cancer treatment. Arch. Pharm. Res. 40, 1420-1432. https://doi.org/10.1007/s12272-017-0968-0
  29. Tripathi, K. D. (2013) Essentials of Medical Pharmacology, 7th ed, p. 791. JP Medical Ltd, London.
  30. Tsubamoto, H., Ueda, T., Inoue, K., Sakata, K., Shibahara, H. and Sonoda, T. (2017) Repurposing itraconazole as an anticancer agent. Oncol. Lett. 14, 1240-1246. https://doi.org/10.3892/ol.2017.6325
  31. Vasaitis, T. S., Bruno, R. D. and Njar, V. C. (2011) CYP17 inhibitors for prostate cancer therapy. J. Steroid Biochem. Mol. Biol. 125, 23-31. https://doi.org/10.1016/j.jsbmb.2010.11.005
  32. Yang, S. F., Chen, M. K., Hsieh, Y. S., Yang, J. S., Zavras, A. I., Hsieh, Y. H., Su, S. C., Kao, T. Y., Chen, P. N. and Chu, S. C. (2010) Antimetastatic effects of Terminalia catappa L. on oral cancer via a down-regulation of metastasis-associated proteases. Food Chem. Toxicol. 48, 1052-1058. https://doi.org/10.1016/j.fct.2010.01.019
  33. Zhang, R., Pan, X., Huang, Z., Weber, G. F. and Zhang, G. (2011) Osteopontin enhances the expression and activity of MMP-2 via the SDF-1/CXCR4 axis in hepatocellular carcinoma cell lines. PLoS ONE 6, e23831. https://doi.org/10.1371/journal.pone.0023831
  34. Zhao, H. G., Zhou, S. L., Lin, Y. Y., Dai, H. F. and Huang, F. Y. (2018) Toxicarioside N induces apoptosis in human gastric cancer SGC-7901 cell by activating the p38MAPK pathway. Arch. Pharm. Res. 41, 71-78. https://doi.org/10.1007/s12272-017-0956-4

Cited by

  1. The Significance of Regulatory MicroRNAs: Their Roles in Toxicodynamics of Mycotoxins and in the Protection Offered by Dietary Therapeutics Against Mycotoxin-Induced Toxicity pp.15414337, 2018, https://doi.org/10.1111/1541-4337.12412
  2. Anti-Proliferative and Anti-Migration Activity of Arene-Ruthenium(II) Complexes with Azole Therapeutic Agents vol.6, pp.4, 2018, https://doi.org/10.3390/inorganics6040132
  3. Disruption of the NF-κB/IL-8 Signaling Axis by Sulconazole Inhibits Human Breast Cancer Stem Cell Formation vol.8, pp.9, 2019, https://doi.org/10.3390/cells8091007
  4. Recent Development of 1,2,4-triazole-containing Compounds as Anticancer Agents vol.20, pp.None, 2020, https://doi.org/10.2174/1568026620666200128143230
  5. Econazole Induces p53-Dependent Apoptosis and Decreases Metastasis Ability in Gastric Cancer Cells vol.28, pp.4, 2018, https://doi.org/10.4062/biomolther.2019.201
  6. Effects of Diabetes Mellitus on the Disposition of Tofacitinib, a Janus Kinase Inhibitor, in Rats vol.28, pp.4, 2018, https://doi.org/10.4062/biomolther.2020.006
  7. In Vitro, Molecular Docking, and In Silico Binding Mode Analysis of Organic Compounds for Antimicrobial and Anticancer Activity against Jurkat, HCT116, and A549 Cell Lines. vol.5, pp.41, 2020, https://doi.org/10.1002/slct.202003025
  8. Strategies for the treatment of breast cancer: from classical drugs to mathematical models vol.18, pp.5, 2018, https://doi.org/10.3934/mbe.2021316
  9. Ca2+ Signaling as the Untact Mode during Signaling in Metastatic Breast Cancer vol.13, pp.6, 2021, https://doi.org/10.3390/cancers13061473
  10. Sertaconazole induced toxicity in HeLa cells through mitotic arrest and inhibition of microtubule assembly vol.394, pp.6, 2018, https://doi.org/10.1007/s00210-021-02059-5
  11. Regulation of Butyrate-Induced Resistance through AMPK Signaling Pathway in Human Colon Cancer Cells vol.9, pp.11, 2018, https://doi.org/10.3390/biomedicines9111604
  12. Large-scale and high-resolution mass spectrometry-based proteomics profiling defines molecular subtypes of esophageal cancer for therapeutic targeting vol.12, pp.1, 2018, https://doi.org/10.1038/s41467-021-25202-5
  13. Distinct mechanism of action for antitumoral neutral cyclometalated Pt(II)-complexes bearing antifungal imidazolyl-based drugs vol.226, pp.None, 2018, https://doi.org/10.1016/j.jinorgbio.2021.111663