• Title/Summary/Keyword: Anti-proliferative activity

Search Result 248, Processing Time 0.035 seconds

Anti-Proliferative Activity of Naturally Occurring Flavonoids on Cultured Human Tumor Cell Lines (천연 유리 Flavonoid 화합물들의 암세포성장 저해효과)

  • Kim, Jung-Sook;Choi, Yeon-Hee;Seo, Jee-Hee;Lee, Jung-Won;Kim, Seong-Kie;Choi, Sang-Un;Kang, Jong-Seong;Kim, Young-Kyoon;Kim, Sung-Hoon;Kim, Young-Sup;Ryu, Shi-Yong
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.2 s.137
    • /
    • pp.164-170
    • /
    • 2004
  • The flavonoids are a very large and important group of polyphenolic natural products, which are united by their derivatization from the heterocycle, flavone. They are distributed in higher plants and occur widely in the fruits and vegetables that make up the human diet. They exhibit a wide range of biological properties, including antitumor, antiinflammatory, hepatoprotective, antimicrobial, insecticidal and estrogenic activities. They are also major components of many plant drugs and it is possible that they contribute to the curative properties. For the purpose of developing anticancer agent of natural origin, we have evaluated forty four kinds of naturally occurring flavonoids for the inhibitory activity upon the proliferation of cultured human tumor cells such as A549 (non small cell lung), SK-OV-3 (ovary), SK-MEL-2 (melanoma), XF498 (central nerve system) and HCT-15 (colon) in vitro.

Resveratrol Affects Protein Kinase C Activity and Promotes Apoptosis in Human Colon Carcinoma Cells

  • Fang, Jie-Yu;Li, Zhi-Hua;Li, Qiang;Huang, Wen-Sheng;Kang, Liang;Wang, Jian-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6017-6022
    • /
    • 2012
  • Background: Resveratrol has been reported to have potential chemopreventive and apoptosis-inducing properties in a variety of tumor cell lines. Objective: In this study, to investigate the effects of resveratrol on protein kinase C (PKC) activity and apoptosis in human colon carcinoma cells, we used HT-29 cells and examined the $PKC{\alpha}$ and ERK1/2 signaling pathways. Methods: To test the effects of resveratrol on the growth of HT-29 cells, the cells were exposed to varying concentrations and assessed with the the MTT cell-viability assay. Fluorescence-activated cell sorter (FACS) analysis was applieded to determine the effects of resveratrol on cell apoptosis. Western blotting was performed to determine the protein levels of $PKC{\alpha}$ and ERK1/2. In inhibition experiments, HT-29 cells were treated with G$\ddot{o}$6976 or PD98059 for 30 min, followed by exposure to $200{\mu}M$ resveratrol for 72 h. Results: Resveratrol had a significant inhibitory effect on HT-29 cell growth. FACS revealed that resveratrol induced apoptosis. Western blotting showed that e phosphorylation of $PKC{\alpha}$ and ERK1/2 was significantly increased in response to resveratrol treatment. Pre-treatment with $PKC{\alpha}$ and ERK1/2 inhibitors (G$\ddot{o}$6976 and PD98059) promoted apoptosis. Conclusion: Resveratrol has significant anti-proliferative effects on the colon cancer cell line HT-29. The PKC-ERK1/2 signaling pathway can partially mediate resveratrol-induced apoptosis of HT-29 cells.

Inhibitory Effects of Dehydrocostuslactone Isolated from Saussureae Radix on CDK2 Activity (목향에서 분리한 dehydrocostuslactone의 CDK2 활성저해)

  • Jeon, Yong-Jin;Lee, Hong-Sub;Ko, Jong-Hee;An, Kyung-Mi;Yu, Seung-Woo;Kang, Jae-Hoon;Hwang, Bang-Yeon;Kim, Tae-Yong;Yeon, Seung-Woo
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.2 s.141
    • /
    • pp.97-101
    • /
    • 2005
  • Saussureae Radix, the dried root of Saussurea lappa Clarke, has traditionally used for alleviating pain in abdominal distention and tenesmus, indigestion with anorexia, dysentery, nausea, and vomiting. Here we observed that methanol extracts of Saussurea Radix inhibited CDK2 activities in vitro. This inhibitory compound was isolated and identified as dehydrocostuslactone, one of the major constituents of Saussurea Radix. It is well known that dehydrocostuslactone induces apoptotic cell death. In this study, we also showed that dehydrocosruslactone inhibited cellular Rb phosphorylation and blocked cell growth at the concentration below $12\;{\mu}g/ml$ at which apoptotic cell death was not observed. Taken together, these results indicated that dehydrocostuslactone showed its anti-proliferative effects through the inhibition of CDK2 activity as well as the induction of apoptotic cell death.

Anti-proliferative Components in the Roots Extract from Pueraria thunbergiana (갈근으로부터 분리한 암세포 증식저해물질)

  • Baek, Mok-Ryeon;Choi, Yeon-Hee;Yoo, Dae-Seok;Kim, Mi-Ri;Choi, Sang-Un;Hong, Kyung-Sik;Kim, Young-Sup;Kim, Young-Kyoon;Lee, Kang-Ro;Ryu, Shi-Yong
    • Korean Journal of Pharmacognosy
    • /
    • v.40 no.1
    • /
    • pp.46-50
    • /
    • 2009
  • The antitumor activity of the roots extract of Pueraria thunbergiana was investigated on the basis of cytotoxicity upon the cultured human tumor cell lines, in vitro. The purification of methylene chloride (MC) soluble part and ethylacetate (EA) soluble part of extract by column chromatography furnished seven isoflavonoids, two triterpenoids, one but-2-enolide. The structures of them were established by chemical and spectroscopic means to be lupeol (1), $\beta$-sitosterol (2), biochanin A (3), (-)-tuberosin (4), calycosin (5), daidzein (6), puerarin (7), daidzin (8), (+)-puerol-B 2-O-$\beta$-glucopyranoside (9), formononetin-7-O-$\beta$-glucopyranoside (10). Each isolates ($1{\sim}10$) were evaluated for inhibitory activities on the proliferation of cultured human tumor cell lines such as A549, SK-OV-3, HCT-15 and SK-MEL-2, respectively.

A Study on the Effects of Anticareinogenie Activity of Chondria Crassicaulis (서실 분획물의 암예방효과)

  • Jeon Kwang-Hye;Shin Mi-Ok;Bae Song-Ja
    • Journal of Nutrition and Health
    • /
    • v.38 no.7
    • /
    • pp.503-511
    • /
    • 2005
  • In this study we investigated the biological activity of Chondria Crassicaulis (CC) on the human cancer cells. CC was extracted with methanol and further fractionated into four different types: hexane (CCMH), methanol (CCMM), butanol (CCMB), and aqueous (CCMA) partition layers. We determined the cytotoxic effect of these layers on human cancer cells by MTT assay. Among various partition layers of CC, the CCMM and CCMB showed the strong cytotoxic effects at 150 ${\mu}g$/ml which resulted $98.91\%$, $92.96\%$ on HeLa cell lines and $95.47\%$, $77.05\%$ on MCF-7 cell lines. And, the anti-proliferative effect of CC was accompanied by a marked inhibition of cyclooxygenase (COX-2), Caspase-3 and IAP (cIAP-1, cIAP-2 and XIAP) protein and concomitant induction of p53, p21 and Survivin protein. However, CC did not affect the level of Bax, Bcl-2 and Bcl-XL- protein. Also, we observed quinone reductase (QR) induced effects in all fraction layers of CC on HepG2 cells. The QR induced effects of the CCMH and CCMM on HePG2 cells at 120 ${\mu}g$/mL concentration indicated 3.73 and 2.45 with the control value of 1.0. Although further studies are needed, the present work suggests that CC may be a chemopreventive agent for the treatment of human cancer cells.

Extract from Artemisia annua Linné Induces Apoptosis through the Mitochondrial Signaling Pathway in HepG2 Cells (HepG2 간암세포에서 미토콘드리아 경로를 통한 개똥쑥 추출물의 Apoptosis 유도 효과)

  • Kim, Bo Min;Kim, Guen Tae;Kim, Eun Ji;Lim, Eun Gyeong;Kim, Sang-Yong;Kim, Young Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1708-1716
    • /
    • 2016
  • The Akt/mammalian target of the rapamycin (mTOR) pathway is activated in the majority of human cancers. Activation of the Akt/mTOR pathway confers resistance to many types of cancer therapy. In this study, we evaluated the apoptotic effect of ethanol extract of Artemisia annua L. through down-regulation of Akt signal pathways and the mitochondrial pathway in hepato-carcinoma cells (HepG2). A. annua extract is known as a medicinal herb that is effective against cancer. We evaluated anti-proliferative activity by MTT-based viability assay and apoptotic effect by Annexin-V/PI staining, mitochondrial membrane potential (MMP), and caspase-3/7 activity as determined by flow cytometry. A. annua treatment led to loss of MMP, resulting in cytochrome c-inducible activation of caspase-3/7. Treatment with A. annua extract reduced activities of Akt/mTOR/anti-apoptotic proteins (such as Bcl-2 and $Bcl-X_L$), leading to increased activation of tumor suppressor p53 and pro-apoptotic proteins (such as Bax and Bak). We applied LY294002 (inhibitor of Akt) and rapamycin (inhibitor of mTOR) to determine the relationship between signal transduction of proteins associated with apoptosis. LY294002 and rapamycin significantly reduced cell viability and increased apoptosis. These results indicate that Bcl-2 and caspase-3 are key regulators in A. annua extract-induced apoptosis in HepG2 cells and are controlled through the Akt/mTOR signaling pathway.

Induction of Apoptosis by Ethanol Extract of Scutellaria baicalensis in Renal ell Carcinoma Caki-1 Cells (황금(黃芩) 에탄올 추출물에 의한 인체 신세포암 Caki-1 세포의 자가세포사멸 유도)

  • Hwang, Won Deok;Im, Yong-Gyun;Son, Byoung Yil;Park, Cheol;Park, Dong Il;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.518-528
    • /
    • 2013
  • Scutellaria baicalensis, belonging to the family Labiatae, is widely distributed in Korea, China, Mongolia, and eastern Siberia. It has been used in traditional medicine for various diseases, such as dysentery, pyrexia, jaundice, and carbuncles. In addition, S. baicalensis is reported to possess various beneficial pharmacological activities, including anti-inflammatory, antidiabetic, antiviral, antihypertension, antioxidant, and anticancer effects. However, the molecular mechanisms of its anticancer activity have not been clearly elucidated. In the present study, we investigated the proapoptotic effects of ethanol extract of S. baicalensis (EESB) on human renal cell carcinoma Caki-1 cells. The anti-proliferative activity of EESB was associated with apoptosis induction, which was associated with the up-regulation of death receptor 4, the Fas ligand, and Bax and the down-regulation of Bid, XIAP, and cIAP-1 proteins. EESB treatment also induced mitochondrial dysfunction, proteolytic activation of caspase-3, -8, and -9 and degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase, ${\beta}$-catenin, and phospholipase C-${\gamma}1$. However, pretreatment of a pan-caspase inhibitor, z-VAD-fmk, significantly attenuated the EESB-induced apoptosis. Taken together, these findings suggest that EESB may be a potential chemotherapeutic agent. Further studies will be needed to identify the active compounds that confer the anticancer activity of S. baicalensis.

Activity-guided Purification of N-benzyl-N-methyldecan-1-amine from Garlic and Its Antitumor Activity against CT-26 Colorectal Carcinoma in BALB/C Mice (활성추적분리법에 의해서 순수분리한 마늘 N-benzyl-N-methyldecan-1-amine이 CT-26 세포주 이식 BALB/C mice의 항암효과)

  • Seetharaman, Rajasekar;Choi, Seong Mi;Guo, Lu;Cui, Zheng Wei;Otgonbayar, Duuriimaa;Park, Ju Ha;Kwon, Young-Seok;Kwak, Jung Ho;Kwon, Young Hee;Min, Ji Hyun;Kang, Jum Soon;Choi, Young Whan
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1062-1070
    • /
    • 2019
  • A components of garlic (Allium sativum) have anti-proliferative effects against various types of cancer. We aimed to investigate the capacity of garlic compounds to anti-tumor on a various cancer cell lines. Fractionation of garlic extract, guided by antiproliferative activity against human gastric cancer (AGS) cells, has resulted in the isolation of N-benzyl-N-methyldecan-1-amine (NBNMA). We investigated the effect of newly isolated NBNMA from garlic cloves on the inhibition of the growth of CT-26, AGS, HepG2, HCT-116, MCF7, B16F10, and Sarcoma-180 cells for in vitro and CT-26 colon carcinoma cells in vivo. NBNMA exhibited an antiproliferative effect in CT-26 cells by apoptotic cell death. NBNMA exhibited down-regulation of anti-apoptotic Bcl-2 proteins and up-regulation of apoptotic Bad protein expression in western blot analyses. In addition, NBNMA meagre activated caspase 3 and caspase 9, initiator caspases of the extrinsic and intrinsic pathways of apoptosis. NBNMA treatment at a dose of 10 mg/kg for 21 days in experimental mice implanted with tumors resulted in significant reduction of the tumor weight (43%). NBNMA exhibited both in vitro and in vivo anticancer activity. These results indicate that NBNMA has promising potential to become a novel anticancer agent from garlic cloves for the treatment of colon carcinoma cancer.

In vitro and in vivo Effects of Extracts of Lentinus edodes on Tumor Growth in a Human Papillomavirus 16 Oncogenes-transformed Animal Tumor Model -Apoptosis-mediated Tumor Cell Growth Inhibition- (자궁경부암동물세포에서 표고버섯의 in vitro 및 in vivo 항암효과 -Apoptosis에 의한 종양세포주의 성장억제-)

  • Park, Jeong-Min;Lee, Sung-Hyun;Kim, Jung-Ok;Park, Hong-Ju;Park, Jae-Bok;Sin, Jeong-Im
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.141-146
    • /
    • 2004
  • Fungal products indirectly mediate anti-tumor effects in vitro and in vivo. To investigate whether Lentinus edodes might possess direct anti-tumor substance, L. edodes was extracted and tested on human papillomavirus (HPV) 16 oncogenes-associated animal tumor cells (TC-1) and in an animal tumor model. Only water extract displayed direct anti-proliferative effects in TC-1 tumor cells in vitro. This inhibition was dose-dependent, and inhibitory concentration ($IC_{50}$) was $800\;{\mu}g/mL$. Fungal extracts also showed growth inhibition to human cervical cancer cells (CaSki and HeLa) similarly to TC-1 tumor cells. When fungal extracts were added at a high dose (1.5 mg/mL), cell growth was inhibited within 6 hr following extract treatment. Cell growth inhibition was blocked by heat treatment, but not by low pH, which is indicative of heat sensitivity of this anti-proliferative substance. Cell growth suppression was mediated by apoptosis, as determined by Annexin V and propidium iodide staining. When challenged with TC-1 cells, direct intratumoral injection of fungal extracts resulted in some positive effect on tumor growth inhibition, as compared to oral delivery. Results suggest that heat labile substance of L. edodes suppresses growth of HPV oncogenes-associated tumor cells through apoptosis.

Effect of corosolic acid on apoptosis and angiogenesis in MDA-MB-231 human breast cancer cells (Corosolic acid의 유방암세포 증식 및 전이에 미치는 영향)

  • Son, Kun Ho;Hwang, Jin-hyeon;Kim, Dong-ha;Cho, Young-Eun
    • Journal of Nutrition and Health
    • /
    • v.53 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • Purpose: Corosolic acid (CA), also known as 2α-hydroxyursolic acid, is present in numerous plants, and is reported to exhibit anti-cancer and anti-proliferative activities in various cancer cells such as osteosarcoma, hepatocellular carcinoma, lung adenocarcinoma, and colon cancer. However, the anti-cancer activity of CA on human breast cancer cells and the underlying mechanisms remain to be elucidated. The present study aimed to investigate the anticancer effects of CA in the human breast cancer cell line, MDA-MB-231. Methods: Cell viability, reactive oxygen species (ROS) production, apoptosis marker protein expression, migration, invasion rate, and vascular endothelial growth factor (VEGF) levels were assessed by treating MDA-MB-231 cells to increasing concentrations of CA. Results: The results showed that CA significantly inhibited the cell proliferation of MDA-MB-231 cells in a dose-dependent manner. To assess the effect of CA on apoptosis, nuclei of MDA-MB-231 cells were stained with DAPI solution. Chromatin condensation, which indicates apoptosis, was observed to increase dose-dependently. In addition, western-blot analysis revealed elevated levels of the apoptosis marker proteins (Bax and cleaved caspase 3) subsequent to MDA-MB-231 exposure to CA. ROS production was also increased in the CA-induced apoptosis in MDA-MB-231 treated cells. Interestingly, CA exposure resulted in significantly decreased migration and invasion rates in the MDA-MB-231 cells. Data further revealed that exposure to CA markedly decreased the VEGF concentration, thereby contributing to a reduction in angiogenesis. Conclusion: Our results determined that exposure to CA induces anti-proliferation, apoptosis, and ROS production, and suppresses cell migration and invasion rate in MDA-MB-231 cells. Taken together, these results indicate the potential of CA to be applied as an effective chemotherapeutic agent for treating breast cancer.