Inhibitory Effects of Dehydrocostuslactone Isolated from Saussureae Radix on CDK2 Activity

목향에서 분리한 dehydrocostuslactone의 CDK2 활성저해

  • Jeon, Yong-Jin (ILDONG Research Laboratories, ILDONG Pharmaceutical Co. Ltd) ;
  • Lee, Hong-Sub (ILDONG Research Laboratories, ILDONG Pharmaceutical Co. Ltd.) ;
  • Ko, Jong-Hee (ILDONG Research Laboratories, ILDONG Pharmaceutical Co. Ltd.) ;
  • An, Kyung-Mi (ILDONG Research Laboratories, ILDONG Pharmaceutical Co. Ltd.) ;
  • Yu, Seung-Woo (ILDONG Research Laboratories, ILDONG Pharmaceutical Co. Ltd.) ;
  • Kang, Jae-Hoon (ILDONG Research Laboratories, ILDONG Pharmaceutical Co. Ltd.) ;
  • Hwang, Bang-Yeon (College of Pharmacy, Chungbuk National University) ;
  • Kim, Tae-Yong (ILDONG Research Laboratories, ILDONG Pharmaceutical Co. Ltd.) ;
  • Yeon, Seung-Woo (ILDONG Research Laboratories, ILDONG Pharmaceutical Co. Ltd.)
  • Published : 2005.06.30

Abstract

Saussureae Radix, the dried root of Saussurea lappa Clarke, has traditionally used for alleviating pain in abdominal distention and tenesmus, indigestion with anorexia, dysentery, nausea, and vomiting. Here we observed that methanol extracts of Saussurea Radix inhibited CDK2 activities in vitro. This inhibitory compound was isolated and identified as dehydrocostuslactone, one of the major constituents of Saussurea Radix. It is well known that dehydrocostuslactone induces apoptotic cell death. In this study, we also showed that dehydrocosruslactone inhibited cellular Rb phosphorylation and blocked cell growth at the concentration below $12\;{\mu}g/ml$ at which apoptotic cell death was not observed. Taken together, these results indicated that dehydrocostuslactone showed its anti-proliferative effects through the inhibition of CDK2 activity as well as the induction of apoptotic cell death.

Keywords

References

  1. Sherr, C. J. and Roberts, J. M. (1999) CDK inhibitors: positive and negative regulators of GI-phase progression. Genes Dev. 13: 1501-1512 https://doi.org/10.1101/gad.13.12.1501
  2. Adams, P. D. (2001) Regulation of the retinoblastoma tumor suppressor protein by cyclin/cdks. Biochim. Biophys. Acta 1471: MI23-M133
  3. Kato, J. (1999) Induction of S phase by Gl regulatory factors. Front. Biosci. 4: D787-D792 https://doi.org/10.2741/Kato
  4. Donnellan, R and Cherty, R (1998) Cyclin Dl and human neoplasia. Mol. Pathol. 51: 1-7 https://doi.org/10.1136/mp.51.1.1
  5. Fry, D. W., Bedford, D. C., Harvey, P. H., Fritsch, A, Keller, P. R., Wu, Z., Dobrusin, E., Leopold, W. R, Fattaey, A, and Garrett, M. D. (2001) Cell cycle and biochemical effects of PD 0183812. A potent inhibitor of the cyelin D-dependent kinases CDK4 and CDK6. J. Biol. Chem. 276: 16617-16623 https://doi.org/10.1074/jbc.M008867200
  6. Chen, H. C., Chou, C. K., Lee, S. D., Wang, J. C., and Yeh, S. F. (1995) Active compounds from Saussurea lappa Clarks that suppress hepatitis B virus surface antigen gene expression in human hepatoma cells. Antiviral Res. 27: 99-109 https://doi.org/10.1016/0166-3542(94)00083-K
  7. Wedge, D. E., Galindo, J. C., and Macias, F. A. (2000) Fungicidal activity ofnatural and synthetic sesquiterpene lactone analogs. Phytochem. 53: 747-757 https://doi.org/10.1016/S0031-9422(00)00008-X
  8. Park, H. J., lung, W. T., Basnet, P., Kadota, S., and Namba, T. (1996) Syringin 4-0-beta-glucoside, a new phenylpropanoid glycoside, and costunolide, a nitric oxide synthase inhibitor, from the stem bark of Magnolia sieboldii. J. Nat. Prod. 59: 1128-1130 https://doi.org/10.1021/np960452i
  9. Matsuda, H., Toguchida, I., Ninomiya, K., Kageura, T., Morikawa, T., and Yoshikawa, M. (2003) Effects of sesquiterpenes and amino acid-sesquiterpene conjugates from the roots of saussurea lappa on inducible nitric oxide synthase and heat shock protein in lipopolysaccharide-activated macrophages. Bioorg. Med. Chem. 11: 709-715 https://doi.org/10.1016/S0968-0896(02)00471-6
  10. leong, S. J., Itokawa, T., Shibuya, M., Kuwano, M., Ono, M., Higuchi, R., and Miyamoto, T. (2002) Costunolide, a sesquiterpene lactone from Saussurea lappa, inhibits the VEGFR KDR/Flk-l signaling pathway. Cancer Lett. 187: 129-133 https://doi.org/10.1016/S0304-3835(02)00361-0
  11. Choi, J. H., Seo, B. R., Seo, S. H., Lee, K. T., Park, J. H., Park, H. J., Choi, J. W., Itoh, Y., and Miyamoto, K (2002) Costunolide induces differentiation of human leukemia HL60 cells. Arch. Pharm. Res. 25: 480-484 https://doi.org/10.1007/BF02976606
  12. Bocca, C., Gabriel, L., Bozzo, F., and Miglietta, A. (2004) A sesquiterpene lactone, costunolide, interacts with microtubule protein and inhibits the growth of MCF-7 cells. Chem. Biol. Interact. 147: 79-86 https://doi.org/10.1016/j.cbi.2003.10.008
  13. Kattage, S. L., Naik, R. G,Lakdawalla, A. D., Dohadwalla, A. N., Rupp, R. H., and Desouza, N. 1. (1990) 4H-l-benzopyran- 4-one compounds which have anti-inflammatory or immunomodulating action. U.S. Patent 4,900,727
  14. Park, H. J., Kwon, S. H., Han, Y N., Choi, J. W., Miyamoto, K, Lee, S. H., and Lee, K. T. (2001) Apoptosis-lnducing costunolide and a novel acyclic monoterpene from the stem bark of Magnolia sieboldii. Arch. Pharm. Res. 24: 342-348 https://doi.org/10.1007/BF02975104
  15. Lee, M. G, Lee, K. T., Chi, S. G, and Park, J. H. (2001) Costunolide induces apoptosis by ROS-mediated mitochondrial permeability transition and cytochrom C release. Biol. Pharm. Bull. 24: 303-306 https://doi.org/10.1248/bpb.24.303
  16. Pavletich, N. P. (1999) Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J. Mol. Biol. 287: 821-828 https://doi.org/10.1006/jmbi.1999.2640