• 제목/요약/키워드: Anti-inflammatory agent

검색결과 667건 처리시간 0.058초

Xylitol Mitigate Neutrophil Inflammatory Response Against Porphyromonas gingivalis Infection

  • Na, Hee Sam;Song, YuRi;Choi, Yoon Hee;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제43권3호
    • /
    • pp.141-146
    • /
    • 2018
  • Periodontitis is generally a chronic disorder characterized by breakdown of tooth-supporting tissues, producing dentition loss. Porphyromonas gingivalis (P. gingivalis), a Gramnegative anaerobic rod, is one of the major pathogens associated with periodontitis. Neutrophils are first line defense cells in the oral cavity that play a significant role in inflammatory response. Xylitol is a known anti-caries agent and has anti-inflammatory effects. In this study, we conducted experiments to evaluate anti-inflammatory effects of xylitol on P. gingivalis infected neutrophils for possible usage in prevention and treatment of periodontal infections. P. gingivalis was intraperitoneally injected and peritoneal lavage was collected for cytokine determination. For in vitro study, neutrophils were collected from mouse peritoneal cells after zymosan injection or bone marrow cells. Neutrophils were stimulated with live P. gingivalis and ELISA was used to determine the effect of xylitol on P. gingivalis induced cytokine production. $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ concentration and neutrophil population in the peritoneal lavage was increased in P. gingivalis-infected mouse. Peritoneal cells infected with live P. gingivalis revealed significantly increased production of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ at multiplicity of infection of 10. Neutrophils from bone marrow and peritoneal lavage revealed increased production of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$. Xylitol significantly mitigated P. gingivalis induced cytokine production in neutrophils. Findings indicate that xylitol is an anti-inflammatory agent in neutrophils infected with live P. gingivalis, that suggests its use in periodontitis management.

Anti-Diabetic and Anti-Inflammatory Effects of Green and Red Kohlrabi Cultivars (Brassica oleracea var. gongylodes)

  • Jung, Hyun Ah;Karki, Subash;Ehom, Na-Yeon;Yoon, Mi-Hee;Kim, Eon Ji;Choi, Jae Sue
    • Preventive Nutrition and Food Science
    • /
    • 제19권4호
    • /
    • pp.281-290
    • /
    • 2014
  • The aim of the present study was to evaluate the anti-diabetic, anti-inflammatory, antioxidant potential, and total phenolic content (TPC) of green and red kohlrabi cultivars. Anti-diabetic and anti-inflammatory activities were evaluated via protein tyrosine phosphatase (PTP1B) and rat lens aldose reductase inhibitory assays and cell-based lipopolysaccharide (LPS)-induced nitric oxide (NO) inhibitory assays in RAW 264.7 murine macrophages. In addition, scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical, and peroxynitrite ($ONOO^-$) were used to evaluate antioxidant potential and TPC was selected to assess phytochemical characteristics. Between the two kohlrabi cultivars, red kohlrabi (RK) had two times more TPC than green kohlrabi (GK) and showed significant antioxidant effects in DPPH, ABTS, and $ONOO^-$ scavenging assays. Likewise, methanol (MeOH) extracts of RK and GK inhibited LPS-induced NO production in a dose dependent manner that was further clarified by suppression of iNOS and COX-2 protein production. The MeOH extracts of RK and GK exhibited potent inhibitory activities against PTP1B with the corresponding $IC_{50}$ values of $207{\pm}3.48$ and $287{\pm}3.22{\mu}g/mL$, respectively. Interestingly, the RK MeOH extract exhibited significantly stronger anti-inflammatory, anti-diabetic, and antioxidant effects than that of GK MeOH extract. As a result, our study establishes that RK extract with a higher TPC might be useful as a potent anti-diabetic, antioxidant, and anti-inflammatory agent.

Anti-inflammatory Effect of Hederagenin Glycoside Isolated from Lonicera japonica

  • Son, Kun-Ho;Chang, Hyun-Wook;Kim, Hyun-Pyo;Kang, Sam-Sik
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.136-137
    • /
    • 2002
  • Lonicera japonica Thunb. is a twining shrub that has been used as an antidote and to treat urinary disorders, fever and headache. It has been known as an anti-inflammatory agent in Korea from ancient times and is used widely for treating upper-respiratory tract infections, diabetes mellitus and rheumatoid arthritis. In the previous research, we isolated several flavonoid derivatives from the EtOAc soluble fraction. (omitted)

  • PDF

Echinacea purpurea extract inhibits LPS-induced inflammatory response by interfering with TLR4-mediated NF-κB and MAPKs signaling pathways

  • Kim, Hae Lim;Min, Daeun;Lee, Sung-Kwon;Choi, Bong-Keun;Lee, Hae Jin;Lee, Dong-Ryung
    • 동의생리병리학회지
    • /
    • 제36권1호
    • /
    • pp.28-34
    • /
    • 2022
  • Echinacea purpurea (Asteraceae family) is widely used in the European countries and the United States due to its proven immune enhancement and anti-inflammatory effects. Echinacea purpurea has been reported prevent and treat upper respiratory tract infections and common cold, but the underlying molecular mechanisms are not well understood. In the present study, we examined the anti-inflammatory effects and molecular mechanisms of Echinacea purpurea (EP) extract using lipopolysaccharide (LPS)-stimulated signal pathways in RAW264.7 cells. Our results suggest that EP extract exerts anti-inflammatory effects by down-regulating the expression of LPS-induced toll-like receptor 4 (TLR4), subsequently inhibiting the activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathways and suppression of the release of pro-inflammatory cytokines. These results suggest that EP extract is a potential therapeutic agent for inflammatory diseases.

Propionibacterium acnes에 의해 유도된 염증에 대한 Chitosan-phytochemical Conjugates의 항염증 효과 (Anti-inflammatory Effects of Chitosan-phytochemical Conjugates against Propionibacterium acnes-induced Inflammation)

  • 김지훈;제재영;김영목
    • 한국수산과학회지
    • /
    • 제49권5호
    • /
    • pp.589-593
    • /
    • 2016
  • Propionibacterium acnes infection in skin tissue often causes acne vulgaris, commonly characterized by inflammatory papules, pustules, and nodules. Chitosan and its derivatives possess strong anti-inflammatory effects. In this study, the anti-inflammatory activity of chitosan-phytochemical conjugates on P. acnes-infected human skin keratinocytes (HaCaT) was evaluated. We designed a model of P. acnes-induced inflammation in viable HaCaT cells. Nitric oxide (NO), an inflammatory marker, was successfully elevated by P. acnes infection in HaCaT cells in a dose-dependent manner. Furthermore, the levels of NO were reduced by treatment with chitosan-phytochemical conjugates (chitosan-caffeic acid, -ferulic acid and -sinapic acid) in a dose-dependent manner. Among these conjugates, chitosan-caffeic acid exhibited the strongest NO suppression in HaCaT cells infected with P. acnes. The results obtained in this study suggest that chitosan-phytochemical conjugates could be used as a potential therapeutic agent against acne vulgaris.

Anti-inflammatory Effect of Dactyloquinone B and Cyclospongiaquinone-1 Mixture in RAW264.7 Macrophage and ICR Mice

  • Lee, Dong-Sung;Hwang, In Hyun;Im, Nam-Kyung;Jeong, Gil-Saeng;Na, MinKyun
    • Natural Product Sciences
    • /
    • 제21권4호
    • /
    • pp.268-272
    • /
    • 2015
  • Sesquiterpene-quinone is a class of secondary metabolites frequently encountered from marine sponge. The present study was designed to examine the anti-inflammatory action of sponge-derived dactyloquinone B (DQB) and cyclospongiaquinone-1 (CSQ1) mixture using lipopolysaccharide (LPS)-induced inflammatory responses. We measured the production of nitric oxide (NO), tumor necrosis factor-alpha ($TNF-{\alpha}$), $interleukin-1{\beta}$ ($IL-1{\beta}$), and interleukin-6 (IL-6) and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein. $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6 production, which increased by treatment with LPS, were significantly inhibited by DQB and CSQ1 mixture. It also decreased the production of NO production, and iNOS and COX-2 expression. Furthermore, it reduced 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced ear edema of ICR mice. These results demonstrate that sesquiterpene-quinone, DQB and CSQ1 mixture, might serve as a chemical pipeline for the development of anti-inflammatory agent.

한약조성물 KCNS-001이 자유라디칼과 염증매개인자에 미치는 영향 (Anti-inflammatory Effects of Herbal Formula KCNS-001 for Mitigating Atopic Dermatitis)

  • 이정복;최재환;방옥선;유영법
    • 대한본초학회지
    • /
    • 제24권3호
    • /
    • pp.97-102
    • /
    • 2009
  • Objectives : We determined the anti-inflammatory activity of KCNS-001 that is a herbal formula including 6 medicinal plants and that are used to mitigate atopic dermatitis in oriental medicine. Methods : To evaluate anti-inflammatory effect of KCNS-001, we measured the production of reactive oxygen species (ROS), nitric oxide (NO) and cyclooxygenase-2 (COX-2) in LPS-activated Raw 264.7 cells. Cell viability was determined by MTT assay. The concentrations of ROS and relative level of NO were measured with DPPH assay and Griess reagent, respectively. COX-2 and TNF-$\alpha$ were detected by enzyme immuno assay (EIA) and enzyme-linked immunosorbent assay (ELISA). Results : ROS and NO production were reduced by KCNS-001 in a dose-dependent manner. KCNS-001 significantly inhibited activity of COX-2 and suppressed the release of tumor necrosis factor-alpha (TNF-$\alpha$). Conclusions : These results indicate that the KCNS-001 may have an anti-inflammatory agent for the treatment of various inflammatory disease.

Malus melliana 에탄올 추출물의 항산화 및 항염증 활성 (The Anti-oxidative and Anti-inflammatory Activities of Malus melliana Ethanol Extract)

  • 이수현;진경숙;김병우;권현주
    • 생명과학회지
    • /
    • 제27권7호
    • /
    • pp.783-789
    • /
    • 2017
  • Malus melliana (Hand.-Mazz.) Rehder (M. melliana)는 장미과에 속하는 중국 자생 식물 중 하나로 현재까지 보고된 생리활성은 전무하다. 본 연구에서는 M. melliana 에탄올 추출물(MMEE)의 항산화 및 항염증 생리활성을 DPPH 라디칼 소거능, ROS 소거능, NO 생성 저해능 및 Western blot hybridization을 통한 연관 단백질 발현분석을 통해 평가하였다. MMEE의 항산화능을 DPPH 라디칼 소거능을 통해 분석한 결과 양성 대조군으로 사용한 대표적인 항산화제인 아스코르빈산과 유사한 정도의 높은 소거활성을 보여 MMEE가 매우 강한 항산화능을 보유함을 확인하였다. 또한 RAW 264.7 세포주에서 $H_2O_2$에 의해 유도된 ROS에 대한 MMEE의 소거능을 분석한 결과, 농도의존적인 강한 ROS 소거능을 보였다. 뿐만 아니라 대표적인 항산화 효소인 HO-1 및 그 전사 인자인 Nrf2의 단백질 발현에 미치는 영향을 분석한 결과 MMEE에 의해 HO-1 및 Nrf2의 발현이 증가됨을 보였다. 한편 MMEE가 LPS에 의해 유도된 NO 생성에 미치는 영향을 분석한 결과 농도의존적인 NO 생성 저해능을 보였으며 이는 NO 생성 단백질인 iNOS의 발현 저해에서 기인함을 확인하였다. 이러한 결과를 통해 MMEE의 높은 항산화능과 항염증 활성을 확인하였으며 향후 잠재적인 기능성 소재로서 유용하게 활용될 수 있을 것으로 판단된다. 추후 계속적인 연구를 통해 활성 물질의 규명이 필요할 것으로 판단된다.

인진 추출물의 소염진통작용 (The Anti-inflammatory and Analgesic Activities of Artemisia capillaris Thunberg)

  • 김시나;김희석;남경숙;황성완;황성연
    • 생약학회지
    • /
    • 제36권4호통권143호
    • /
    • pp.338-343
    • /
    • 2005
  • Inflammatory mediators such as interleukin-1 (IL-1), tumor necrosis $factor-{\alpha}\;(TNF-{\alpha}),\;interferon-{\gamma}\;(IFN-{\gamma})$ and lipopolysaccharide (LPS) are thought to play major roles in joint diseases such as a rheumatoid arthritis (RA), and there is considerable evidence playing a role for these cytokines in osteoarthritis (OA). Therefore, we have studied the effects on anti-inflammation and analgesic by ethyl acetate fraction from 70% ethanol extract of Artemisia capillaries (EAC). As a positive control, apigenin, which is known as an anti-inflammatory agent as an iNOS inhibitor, was used and showed the dose-dependent inhibitory effect. EAC showed strong inhibitory efficacy against cytokine-induced proteoglycan degradation, $PGE_2$ production, nitric oxide (NO) production, and matrix-matalloproteinases (MMPs) expression in rabbit articular chondrocyte. In the writhing test induced by acetic acid, EAC $(200{\sim}400\;mg/kg)$ exhibited a dose-dependent inhibition of writhing. The results indicate that EAC have anti-inflammatory and analgesic activities, and could be a good herbal medicine candidate for curing of RA and/or OA.

Butibufen의 합성 (Synthesis of Butibufen)

  • 최홍대;마정주
    • 약학회지
    • /
    • 제35권2호
    • /
    • pp.131-134
    • /
    • 1991
  • A new method for the synthesis of butibufen, which is a non steroidal anti-iriflammatory agent, is described. Friedel-Crafts reaction of isobutylbenzene with ethyl $\alpha$-chloro-.alpha.-(methylthio) acetate (1) gives ethyl $\alpha$-methylthio-(p-isobutylphenyl)acetate (2). Ethyl 2-methylthio-2-(4-isobutylphenyl)butyrate (3) is obtained from treatment of the compound (2) with NaH and Etl. Butibufen (5) is synthesized by reductive desulfurization of the compound (3) with zinc dust-acetic acid or Raney nickel, followed by hydrolysis of the resultant ethyl 2-(4-isobutylphenyl)butyrate (4).

  • PDF