Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.7.783

The Anti-oxidative and Anti-inflammatory Activities of Malus melliana Ethanol Extract  

Lee, Su Hyeon (Blue-Bio Industry Regional Innovation Center, Dong-Eui University)
Jin, Kyong-Suk (Blue-Bio Industry Regional Innovation Center, Dong-Eui University)
Kim, Byung Woo (Blue-Bio Industry Regional Innovation Center, Dong-Eui University)
Kwon, Hyun Ju (Blue-Bio Industry Regional Innovation Center, Dong-Eui University)
Publication Information
Journal of Life Science / v.27, no.7, 2017 , pp. 783-789 More about this Journal
Abstract
Malus melliana (Hand.-Mazz.) Rehder (M. melliana) is a Chinese plant that belongs to the Rosaceae family. There have been no previous reports regarding its bioactivity. In this study, the anti-oxidative and anti-inflammatory activities of M. melliana ethanol extract (MMEE) were evaluated using a 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity assay, reactive oxygen species (ROS) scavenging activity assay, nitric oxide (NO) inhibitory activity assay, and the analysis of related protein expressions through Western blot hybridization. MMEE showed potent scavenging activity against DPPH, similar to ascorbic acid, a well-known anti-oxidative agent, which was used as a positive control. MMEE also inhibited hydrogen peroxide-induced ROS in RAW 264.7 cells. Moreover, MMEE induced the expression of an anti-oxidative enzyme, heme oxygenase 1, and its upstream transcription factor, nuclear factor E2-related factor-2, in a dose-dependent manner. On the other hand, MMEE was associated with a reduction in NO production, which was induced by the lipopolysaccharide treatment of RAW 264.7 cells. The expression of inducible nitric oxide synthase, which is the upstream regulator of NO production, was also inhibited. Taken together, these results suggest that MMEE has anti-oxidative and anti-inflammatory properties, thus appearing to be a potential anti-oxidant and anti-inflammatory agent. The further identification of active compounds that confer the biological activities of MMEE may be necessary.
Keywords
Anti-inflammatory activity; anti-oxidative activity; Malus melliana ethanol extract;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Pillai, S., Oresajo, C. and Hayward, J. 2005. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation-a review. Int. J. Cosmet. Sci. 27, 17-34.   DOI
2 Radi, R., Beckman, J. S., Bush, K. M. and Freeman, B. A. 1991. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 4244-4250.
3 Saw, C. L., Wu, Q., Su, Z. Y., Wang, H., Yang, Y., Xu, X., Huang, Y., Khor, T. O. and Kong, A. N. 2013. Effects of natural phytochemicals in Angelica sinensis (Danggui) on Nrf2-mediated gene expression of phase II drug metabolizing enzymes and anti-inflammation. Biopharm. Drug Dispos. 34, 303-311.   DOI
4 Shan, Y., Lambrecht, R. W., Donohue, S. E. and Bonkovsky, H. L. 2006. Role of Bach1 and Nrf2 in up-regulation of the heme oxygenase-1 gene by cobalt protoporphyrin. FASEB J. 20, 2651-2653.   DOI
5 Shin, D. C., Kim, G. C., Song, S. Y., Kim, H. J., Yang, J. C. and Kim, B. A. 2013. Antioxidant and antiaging activities of complex supercritical fluid extracts from Dendropanax morbifera, corni fructus and lycii fructus. Kor. J. Herbology 28, 95-100.
6 Soo, Y. B., Song, J. S., Moon, H. I. and Kim, Y. H. 2015. Effects of achyranthoside C dimethyl ester on heme oxygenase- 1 expression and NO production. J. Life Sci. 25, 976-983.   DOI
7 Ames, B. N., Shingenaga, M. K. and Hagen, T. M. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 90, 7915-7922.   DOI
8 Azuma, K., Nakayama, M., Koshica, M., Lppoushi, K., Yamaguchi, Y., Kohata, K., Yamaguchi, Y., Ito, H. and Higashio, H. 1999. Phenolic antioxidants from the leaves of Corchorus olitorius L. J. Agric. Food Chem. 47, 3963-3966.   DOI
9 Balogun, E., Hoque, M., Gong, P., Killeen, E., Green, C. J., Foresti, R., Alam, J. and Motterlini, R. 2003. Curcumin activates the heme oxygenase-1 gene via regulation of Nrf2 and the antioxidant responsive element. Biochem. J. 371, 887-895.   DOI
10 Beckman, K. B. and Ames, B. N. 1979. The free radical theory of aging matures. Physiol. Rev. 59, 527-605.   DOI
11 Gonzalez-Burgos, E. and Gomez-Serranillos, M. P. 2012. Terpene compounds in nature: a review of their potential antioxidant activity. Curr. Med. Chem. 19, 5319-5341.   DOI
12 Zamora, R., Vodovotz, Y. and Billiar, T. R. 2000. Inducible nitric oxide synthase and inflammatory diseases. Mol. Med. 6, 347-373.
13 Sranely, M., Princem, P. and Men, V. P. 2001. Antioxidant action of Tinospora cordifolia root extract in alloxan diabetic rats. Phytither. Res. 15, 213-217.   DOI
14 Srisook, K., Kim, C. and Cha, Y. N. 2005. Molecular mechanisms involved in enhancing HO-1 expression: de-repression by heme and activation by Nrf2, the "one-two" punch. Antioxid. Redox. Signal. 7, 1674-1687.   DOI
15 Guertler, A., Kraemer, A., Roessler, U., Hornhardt, S., Kulka, U., Moertl, S., Friedl, A. A., Illig, T., Wichmann, E. and Gomolka, M. 2011. The WST survival assay: an easy and reliable method to screen radiation-sensitive individuals. Radiat. Prot. Dosimetry 143, 487-490.   DOI
16 Hofseth, L. J. and Ying, L. 2006. Identifying and defusing weapons of mass inflammation in carcinogenesis. Biochim. Biophys. Acta 1765, 74-84.
17 Hu, F. and Lu, R. 2004. Studies on scavenging activities to DPPH free radical of extracts from fresh leaves of some woody plants of Rosaceae. Chinese Bull. Botany 21, 74-78.
18 Szuster-Ciesielska, A., Daniluk, J. and Kandefr-Szerszen, M. 2001. Alcohol-related cirrosis with pancreatitis. The role of oxidative stress in the progression of the disease. Arch. Immunol. Ther. Exp. 49, 19-22.
19 Young, I. S. and McEneny, J. 2001. Lipoprotein oxidation and atherosclerosis. Biochem. Soc. Trans. 29, 358-361.   DOI
20 Hwang, S. M., Chen, C. H., Chen, S. S. and Chen, J. C. 2000. Chitinous materials inhibit nitric oxide production by activated RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 271, 229-233.   DOI
21 Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M. and Nabeshima, Y. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313-322.   DOI
22 Jo, N. R., Park, C. I., Park, C. W., Shin, D. H., Hwang, Y. C., Kim, Y. H. and Park, S. N. 2012. Cellular protective effects of peanut sprout root extracts. Chem. Eng. 23, 183-189.
23 Kim, B. W., Kim, J. I., Kim, H. R. and Byun, D. S. 2014.Anti-inflammatory effect of an ethyl acetate fraction fromMyagropsis yendoi on lipopolysaccharides-stimulated RAW264.7 cells. Kor. J. Fish Aquat. Sci. 47, 527-536.
24 Kim, D. H., Park, S. J., Jung, J. Y., Kim, S. C. and Byun, S. H. 2009. Anti-inflammatory effects of the aqueous extract of Hwangnyeonhaedok-tang in LPS activated macrophage cells. Kor. J. Herbology 24, 39-47.
25 Lee, S. O., Kim, M. J., Kim, D. K. and Choi, H. J. 2005. Antioxidative activities of temperature-stepwise water extracts from Inonotus obliquus. Kor. J. Soc. Food Sci. Nutr. 34, 139-147.   DOI
26 Kocanova, S., Buytaert, E., Matroule, J. Y., Piette, J., Golab, J., de Witte, P. and Agostinis, P. 2007. Induction of hemeoxygenase 1 requires the p38MAPK and PI3K pathways and suppresses apoptotic cell death following hypericin-mediated photodynamic therapy. Apoptosis 12, 731-741.   DOI
27 Kundu, J. K. and Surh, Y. J. 2008. Inflammation: gearing the journey to cancer. Mutat. Res. 659, 15-30.   DOI
28 Lee, K. H., Nam, H. O. and Yoon, W. H. 2007. Effect of protein-bond polysaccharide isolated from Acanthopanax senthopanax in reducing the toxic effect of cisplatin. Kor. J. Pharmacogn. 38, 1-17.
29 Lee, M. S., Lee, J., Kwon, D. Y. and Kim, M. S. 2006. Ondamtanggamibang protects neurons from oxidative stress with induction of heme oxygenase-1. J. Ethnopharmacol. 108, 294-8.   DOI
30 Lee, S. C., Kim, D. H. and Lee, H. W. 1998. Roles of nitric oxide in the ultraviolet B-induced inflammatory response of the mouse skin. Kor. J. Invest. Dermatol. 5, 127-132.
31 Lim, N. K., Lee, D. S., Yeo, S. H., Kim, Y. C. and Jeong, G. S. 2012. Involvement of heme oxygenase-induction in the neuroprotective activitiy of extract of Siegesbeckia herba in murine hippocampal HT22 cells. Kor. J. Pharmacogn. 43, 316-322.
32 Lowenstein, C. J. and Snyder, S. H. 1992. Nitric oxide, a novel biologic messenger. Cell 70, 705-707.   DOI
33 Nguyen, T., Huang, H. C. and Pickett, C. B. 2000. Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. J. Biol. Chem. 275, 15466-15473.   DOI
34 McDaniel, M. L., Kwon, G., Hill, J. R., Marshall, C. A. and Corbett, J. A. 1996. Cytokines and nitric oxide in islet inflammation and diabetes. Proc. Soc. Exp. Biol. Med. 211, 24-32.   DOI
35 Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051-3064.   DOI
36 Ngamwongsatit, P., Banada, P. P., Panbangred, W. and Bhunia, A. K. 2008. WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. J. Microbiol. Methods 73, 211-215.   DOI
37 Noworyta-Sokolowska, K., Gorska, A. and Golembiowska, K. 2013. LPS-induced oxidative stress and inflammatory reaction in the rat striatum. Pharmacol. Rep. 65, 863-869.   DOI
38 Park, C. M., Park, J. Y., Noh, K. H., Shin, J. H. and Song, Y. S. 2011. Taraxacum officinale Weber extracts inhibit LPS-induced oxidative stress and nitric oxide production via the NF-kappaB modulation in RAW 264.7 cells. J. Ethnopharmacol. 133, 834-842.   DOI
39 Papa, S. and Skulachev, V. P. 1997. Reactive oxygen species, mitochondria, apoptosis and aging. Mol. Cell Biochem. 174, 305-319.   DOI