• Title/Summary/Keyword: Anode Material

Search Result 720, Processing Time 0.035 seconds

Synthesis of Boron-doped Crystalline Si Nanoparticles Synthesized by Using Inductive Coupled Plasma and Double Tube Reactor (유도결합 플라즈마와 이중관 반응기를 이용하여 제조한 보론-도핑된 결정질 실리콘 나노입자의 합성)

  • Jung, Chun-Young;Koo, Jeong-Boon;Jang, Bo-Yun;Lee, Jin-Seok;Kim, Joon-Soo;Han, Moon-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.662-667
    • /
    • 2014
  • B-doped Si nanoparticles were synthesized by using inductive coupled plasma and specially designed double tube reactor, and their microstructures were investigated. 0~10 sccm of $B_2H_6$ gas was injected during the synthesis of Si nanoparticles from $SiH_4$ gas. Highly crystalline Si nanoparticles were synthesized, and their crystallinity did not change with increase of $B_2H_6$ flow rates. From SEM measurement, their particle sizes were approximately 30 nm regardless of $B_2H_6$ flow rates. From SIMS analysis, almost saturation of B in Si nanoparticles was detected only when 1 sccm of $B_2H_6$ was injected. When $B_2H_6$ flow rate exceeded 5 sccm, higher concentration of B than solubility limit was detected even if any secondary phase was not detected in XRD or HR-TEM results. Due to their high electronic conductivity, those heavily B-doped Si nanoparticles can be a potential candidate for an active material in Li-ion battery anode.

Effect of Ion-beam Pre-treatment on the Interfacial Adhesion of Sputter-deposited Cu film on FR-4 Substrate (이온빔 전처리가 스퍼터 증착된 Cu 박막과 FR-4 기판 사이의 계면접착력에 미치는 영향)

  • Min, Kyoung-Jin;Park, Sung-Cheol;Lee, Ki-Wook;Kim, Jae-Dong;Kim, Do-Geun;Lee, Gun-Hwan;Park, Young-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.26-31
    • /
    • 2009
  • The effects of $Ar/O_2$ ion-beam pre-treatment conditions on the interfacial adhesion energy of sputterdeposited Cu thin film to FR-4 substrate were systematically investigated in order to understand the interfacial bonding mechanism for practical application to advanced chip-in-substrate package systems. Measured peel strength increases from $45.8{\pm}5.7g/mm$ to $61.3{\pm}2.4g/mm$ by $Ar/O_2$ ion-beam pre-treatment with anode voltage of 64 V. Interfacial bonding mechanism between sputter-deposited Cu film and FR-4 substrate seems to be dominated by chemical bonding effect rather than mechanical interlocking effect. It is found that chemical bonding intensity between carbon and oxygen at FR-4 surface increases due to $Ar/O_2$ ion-beam pretreatment, which seems to be related to the strong adhesion energy between sputter-deposited Cu film and FR-4 substrate.

Study on Dust Explosion Characteristics of Acetylene Black (Acetylene Black의 분진폭발 특성 연구)

  • Jae Jun Choi;Dong Myeong Ha
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.38-43
    • /
    • 2024
  • Recently, with the expanding market for electronic devices and electric vehicles, secondary battery usage has been on the rise. Lithium-ion batteries are particularly popular due to their fast charging times and lightweight nature compared to other types of batteries. A secondary battery consists of four components: anode, cathode, electrolyte, and separator. Generally, the positive and negative electrode materials of secondary batteries are composed of an active material, a binder, and a conductive material. Acetylene Black (AB) is utilized to enhance conductivity between active material particles or metal dust collectors, preventing the binder from acting as an insulator. However, when recycling waste batteries that have been subject to high usage, there is a risk of fire and explosion accidents, as accurately identifying the characteristics of Acetylene Black dust proves to be challenging. In this study, the lower explosion limit for Acetylene Black dust with an average particle size of 0.042 ㎛ was determined to be 153.64 mg/L using a Hartmann-type dust explosion device. Notably, the dust did not explode at values below 168 mg, rendering the lower explosion limit calculation unfeasible. Analysis of explosion delay times with varying electrode gaps revealed the shortest delay time at 3 mm, with a noticeable increase in delay times for gaps of 4 mm or greater. The findings offer fundamental data for fire and explosion prevention measures in Acetylene Black waste recycling processes via a predictive model for lower explosion limits and ignition delay time.

Characteristics of Photoresist-derived Carbon Nanofibers for Li-ion Full Cell Electrode

  • Kim, Hwan-Jun;Joo, Young-Hee;Lee, Sang-Min;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.265-269
    • /
    • 2014
  • Carbon nanofiber electrode has been fabricated for energy storage systems by the electrospinning of SU-8 precursor and subsequent pyrolysis. Various parameters including the applied voltage, the distance between syringe tip and target collector and the flow rate of the polymer affect the diameter of SU-8 electrospun nanofibers. Shrinkage during pyrolysis decreases the fiber diameter. As the pyrolysis temperature increases, the resistivity decreases dramatically. Low resistivity is one of the important characteristics of the electrodes of an energy storage device. Given the advantages of carbon nanofibers having high external surface area, electrical conductivity, and lithium intercalation ability, SU-8 derived carbon nanofibers were applied to the anode of a full lithium ion cell. In this paper, we studied the physical properties of carbon fiber electrode by scanning transmission microscopy, thermal gravimetric analysis, and four-point probe. The electrochemical characteristics of the electrode were investigated by cyclic voltammogram and electrochemical impedance spectroscopy plots.

Single cell property and numerical analysis of metal-supported solid oxide fuel cell (금속지지체형 고체산화물 연료전지의 단전지 특성 및 전산해석)

  • Lee, Chang-Bo;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2222-2227
    • /
    • 2007
  • Newly structured metal-supported solid oxide fuel cell was fabricated and characterized by impedance analysis and galvanodynamic experiment. Using a cermet adhesive, thin ceramic layer composed of anode(Ni/YSZ) and electrolyte(YSZ) was joined with STS430 metal support of which flow channel was fabricated. $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_3$ perovskite oxide was used as cathode material. Single cell performance was increased and saturated at operating time to 300hours at 800$^{\circ}C$ because of cathode sintering effect. The sintering effect was reinvestigated by half cell test and exchange current density was measured as 0.005A/$cm^2$. Maximum power density of the cell was 0.09W/$cm^2$ at 800$^{\circ}C$. Numerical analysis was carried out to classify main factors influencing the single cell performances. Compared to experimental IV curve, simulated curve based on experimental parameters such as exchange current density was in good agreement.

  • PDF

A Experiment Study of Torch Distance on Automated Tandem GMA Welding System (탄뎀 가스메탈아크 용접의 토치 극간거리에 관한 실험적 연구)

  • Lee, Ji-Hye;Kim, Ill-Soo;Jung, Seong-Myeong;Lee, Jong-Pyo;Kim, Young-Su;Park, Min-Ho
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.49-55
    • /
    • 2012
  • The tandem welding process is one of the most efficient welding processes widely used in material joining technique such as manufacturing of strong and durable structures. It facilitates high rate of joint filling with little increase in the overall rate of heat input due to the simultaneous deposition from two electrode wires. The two electrodes in tandem welding process helps in high-efficiency and high productive of welding process. In this study a automated tandem welding system is developed to determine the correlation between cathode and anode and compared with current ratio of the two electrode torch. Three different inter-electrode distances were chosen, 25mm, 35mm and 45mm to perform the experiment with three different current ratio. From the experiment results, the current ratio between two torch has a large impact on width, height and depth of penetration. In addition, a stable bead geometry is obtained when inter-electrode distance is 35mm.

Enhanced Activity for Oxygen Evolution Reaction of Nanoporous IrNi thin film Formed by Electrochemical Selective Etching Process

  • Park, Shin-Ae;Shim, Kyubin;Kim, Kyu-Su;Moon, Young Hoon;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.402-407
    • /
    • 2019
  • Water electrolysis is known as the most sustainable and clean technology to produce hydrogen gas, however, a serious drawback to commercialize this technology is due to the slow kinetics in oxygen evolution reaction (OER). Thus, we report on the nanoporous IrNi thin film that reveals a markedly enhanced OER activity, which is attained through a selective etching of Os from the IrNiOs alloy thin film. Interestingly, electrochemical selective etching of Os leads to the formation of 3-dimensionally interconnected nanoporous structure providing a high electrochemical surface area (ECSA, 80.8 ㎠), which is 90 fold higher than a bulk Ir surface (0.9 ㎠). The overpotential at the nanoporous IrNi electrode is markedly lowered to be 289 mV at 10 mA cm-2, compared with bulk Ir (375 mV at 10 mA cm-2). The nanoporous IrNi prepared through the selective de-alloying of Os is promising as the anode material for a water electrolyzer.

Machining Characteristics according to Electrochemical Polishing (ECP) Conditions of Stainless Steel Mesh (스테인리스 망의 전기화학 폴리싱(ECP) 조건에 따른 가공 특성)

  • Kim, Uk Su;Park, Jeong Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.41-48
    • /
    • 2015
  • Stainless steel mesh has been used as a filter in various fields, including domestic, medical, etc. However, the surface before machining may have an adverse effect the product quality and performance because it is not smooth. Especially, adsorbed impurities in the surface result in difficulty in cleaning. Therefore, in this paper, we propose an improved surface quality through electrochemical polishing (ECP). Two electrodes, composed of STS304 (anode) and copper (cathode) underwent machining with two conditions according to polishing time and current density. As the polishing time and current density increase, the surface of curvature decreases, and roughness and material removal rate (MRR) improves. The machined surface roughness and image were obtained through the atomic force microscope (AFM) and stereoscopic microscope. The study also analyzed hydrophilic effect through contact angles. This obtains corrosion resistance, smoothness, hydrophilic property, etc.

Efficiency Properties of OLED Depending on Thickness Variation of Emission Layer($Alq_3$) (발광층($Alq_3$)의 두께 변화에 따른 OLED의 효율 특성 연구)

  • Park, Jun-Woo;Choi, Gyu-Chae;Kim, Dong-Eun;Kim, Byoung-Sang;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1236_1237
    • /
    • 2009
  • Organic light emitting diode (OLED) is currently the focus of intense interest in the field of photonics. It is attractive for the in low-operating voltage, low power consumption, easy fabrication and low cost. A typical OLED consists of one or more organic layers sandwiched between a high work function anode, such as indium tin oxide (ITO), and a low work function cathode such as Ca, Mg:Ag, and Al. Tris-(8-hydroxy)quinolinealuminum ($Alq_3$) has taken a prominent position in the development of OLED due to its relative stability as an electron transporting and emitting material. We investigated an efficiency improvement of the OLED depending on thickness variation of $Alq_3$.

  • PDF

Preparation of SnO2 Film via Electrodeposition and Influence of Post Heat Treatment on the Battery Performances (전해도금법을 이용한 SnO2 제조 및 후 열처리가 전지 특성에 미치는 영향)

  • Kim, Ryoung-Hee;Kwon, Hyuk-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.2
    • /
    • pp.61-66
    • /
    • 2017
  • $SnO_2$ was electrodeposited on nodule-type Cu foil at varing current density and electrodeposition time. Unlike the previous research results, when the anodic current is applied, the $SnO_2$ layer was not electrodeposited and the substrate is corroded. When the cathodic current was applied, the $SnO_2$ layer could be successfully deposited. At this time, the surface microstructure of the powdery type was observed, which showed similar crystallinity to amorphous and had a very large surface area. Crystallinity increased after low-temperature heat treatment at $250^{\circ}C$ or lower. As a result of evaluating the charge/discharge performances as an anode material for lithium ion battery, it was confirmed that the capacity of the heat treated $SnO_2$ was increased more than 2 times, but it still showed a limit point showing initial low coulombic efficiency and low cyclability. However, it was confirmed that the battery performances may be enhanced through optimizing the electrodeposition process and introducing post heat treatment.