DOI QR코드

DOI QR Code

Preparation of SnO2 Film via Electrodeposition and Influence of Post Heat Treatment on the Battery Performances

전해도금법을 이용한 SnO2 제조 및 후 열처리가 전지 특성에 미치는 영향

  • Kim, Ryoung-Hee (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kwon, Hyuk-Sang (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • 김령희 (한국과학기술원 신소재공학과) ;
  • 권혁상 (한국과학기술원 신소재공학과)
  • Received : 2017.03.03
  • Accepted : 2017.03.27
  • Published : 2017.03.30

Abstract

$SnO_2$ was electrodeposited on nodule-type Cu foil at varing current density and electrodeposition time. Unlike the previous research results, when the anodic current is applied, the $SnO_2$ layer was not electrodeposited and the substrate is corroded. When the cathodic current was applied, the $SnO_2$ layer could be successfully deposited. At this time, the surface microstructure of the powdery type was observed, which showed similar crystallinity to amorphous and had a very large surface area. Crystallinity increased after low-temperature heat treatment at $250^{\circ}C$ or lower. As a result of evaluating the charge/discharge performances as an anode material for lithium ion battery, it was confirmed that the capacity of the heat treated $SnO_2$ was increased more than 2 times, but it still showed a limit point showing initial low coulombic efficiency and low cyclability. However, it was confirmed that the battery performances may be enhanced through optimizing the electrodeposition process and introducing post heat treatment.

Keywords

References

  1. I. A. Courtney and J. R. Dahn : J. Electrochem. Soc. 144 (1997) 2045. https://doi.org/10.1149/1.1837740
  2. J. Yang, Y. Takeda, N. Imanishi and O. Yamamoto : J. Electrochem. Soc. 146 (1999) 4009. https://doi.org/10.1149/1.1392584
  3. S. C. Nam, Y. H. Kim, W. I. Cho, B. W. Cho, H. S. Chun and K. S. Yun : Electrochem. Solid-State Lett. 2 (1999) 9. https://doi.org/10.1149/1.1390717
  4. T. Brousse, R. Retoux, U. Herterich and D. M. Schleich : J. Electrochem. Soc. 45 (1998) 1.
  5. S. C. Nam, Y. S. Yoon, W. I. Cho, B. W. Cho, H. S. Chun and K. S. Yun : Electrochem. Commun. 3 (2001) 6. https://doi.org/10.1016/S1388-2481(00)00136-3
  6. M. Law, H. Kind, B. Messer, F. Kim and P. D. Yang : Angew. Chem. Int. Ed. 41 (2002) 2405. https://doi.org/10.1002/1521-3773(20020703)41:13<2405::AID-ANIE2405>3.0.CO;2-3
  7. S. T. Chang, I. C. Leu, C. L. Liao, H. Yen and M. H. Hon, J. Mater. Chem. 14 (2004) 1821. https://doi.org/10.1039/b316459d
  8. S. Chou, J. Wang, H. Liu and S. Dou : Electrochemistry Communications 11 (2009) 24.
  9. J. W. Park, S. Rajendran and H. S. Kwon : J. Power Sources 159 (2006) 1409. https://doi.org/10.1016/j.jpowsour.2005.11.064
  10. N. R. Shin, Y. M. Kang, M. S. Song, D. Y. Kim and H. S. Kwon : J. Power Sources 186 (2009) 201. https://doi.org/10.1016/j.jpowsour.2008.09.095
  11. J. H. Kim, Ph.D. Thesis, p.79, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (2008).
  12. C. Li, W. Wei, H. Wang, S. Wu, S. Fang and R. Chen : Journal of Physics: Conference Series 152 (2009) 012035. https://doi.org/10.1088/1742-6596/152/1/012035
  13. S. T. Chang, I. C. Leu and M. H. Hon : Journal of Crystal Growth 273 (2004) 195. https://doi.org/10.1016/j.jcrysgro.2004.07.087