Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.10.662

Synthesis of Boron-doped Crystalline Si Nanoparticles Synthesized by Using Inductive Coupled Plasma and Double Tube Reactor  

Jung, Chun-Young (Korea Institute of Energy Research)
Koo, Jeong-Boon (Korea Institute of Energy Research)
Jang, Bo-Yun (Korea Institute of Energy Research)
Lee, Jin-Seok (Korea Institute of Energy Research)
Kim, Joon-Soo (Korea Institute of Energy Research)
Han, Moon-Hee (Graduate School of Energy Science and Technology, Chungnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.10, 2014 , pp. 662-667 More about this Journal
Abstract
B-doped Si nanoparticles were synthesized by using inductive coupled plasma and specially designed double tube reactor, and their microstructures were investigated. 0~10 sccm of $B_2H_6$ gas was injected during the synthesis of Si nanoparticles from $SiH_4$ gas. Highly crystalline Si nanoparticles were synthesized, and their crystallinity did not change with increase of $B_2H_6$ flow rates. From SEM measurement, their particle sizes were approximately 30 nm regardless of $B_2H_6$ flow rates. From SIMS analysis, almost saturation of B in Si nanoparticles was detected only when 1 sccm of $B_2H_6$ was injected. When $B_2H_6$ flow rate exceeded 5 sccm, higher concentration of B than solubility limit was detected even if any secondary phase was not detected in XRD or HR-TEM results. Due to their high electronic conductivity, those heavily B-doped Si nanoparticles can be a potential candidate for an active material in Li-ion battery anode.
Keywords
Si; Nanoparticles; Boron; Doping;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Gupta, C. Schulz, and H. Wiggers, J. Opt. Adv. Materials, 12, 518 (2010).
2 K. Murakami, International Symposium on Manipulation of Atoms and Molecules by Electronic Excitations (ISMAMEE, 2002).
3 M. R. Scriba, D. T. Britton, and M. Harting, Thin Solid Films, 519, 4491 (2011).   DOI
4 H. K. Lee, B. Y. Jang, C. H. Ko, J. C. Lee, and Y. K. Park, J. Nanoscience and Nanotechnology, 11, 1 (2011).   DOI   ScienceOn
5 R. Hull, Porperties of Crystalline Silicon, INSPEC, EMIS, 20, 620 (University of Virginia, USA, 1999).
6 H. Weller, Curr. Opin. Colloid Interface Sci., 3, 194 (1998).   DOI
7 J. R. Heath and J. J. Shiang, Chemical Society Reviews, 27, 65 (1998).   DOI
8 S. Oda, Adv. Coll. Int. Sci., 31, 71 (1997).
9 D. K. Ferry, H. L. Grubin, C. Jacoboni, and A. P. Jauho, Quantum Transport in Ultrasmall Devices, (Plenum Press, New York, 1995).
10 R. W. Collins, C. C. Tsai, M. Hirose, F. Koch, and L. Brus, Mater. Res. Soc. Symp. Proc., 358 (1995).
11 B. Y. Jang, J. C. Lee, and C. H. Ko, J. Korean Phys. Soc., 57, 1029 (2010).   DOI
12 M. J. Kelly, Low-Dimensional Semiconductors, (Clarendon Press, Oxford, 1995).
13 L. Mangolini, D. Jurbergs, E. Rogojina, and U. Kortshagen, J. Lumin., 121, 327 (2006).   DOI
14 A. Gupta, C. Schulz, and H. Wiggers, J. Opt. Adv. Materials, 12, 518 (2010).
15 F. S. Feng, C. W. Liang, and D. Tseng, J. Electrochem. Soc., 141, 1040 (1994).   DOI
16 C. Song, J. Xu, G. Chen, H. Sun, Y. Liu, W. Li, L. Xu, Z. Ma, and K. Chen, Appl. Surf. Sci., 257, 1337 (2010).   DOI
17 J. P. Conde, P. Alpuim, and V. Chu, in Mater. Res. Soc. Symp., Proc. 715 (eds. J. R. Abelson, J. B. Boyce, J. D. Cohen, H. Matsumura, and J. Robertson) (Materials Research Society (Pittsburgh, Pennsylvania, 2002), p. A3.1.1-A3.1.6.
18 P. Ling, L. Kok-Keong, J. M. Redwing, and C. D. Elizabeth, J. Crystal Growth, 277, 428 (2005).   DOI   ScienceOn
19 T. Trindade, Chem. Mater., 13, 3843 (2001).   DOI   ScienceOn