• Title/Summary/Keyword: Anode Material

Search Result 720, Processing Time 0.036 seconds

Electrochemical Performance on the H3BO3 Treated Soft Carbon modified from PFO as Anode Material (음극소재로 PFO에서 개질된 붕산처리 소프트 카본의 전기화학적 성능)

  • Lee, Ho Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.746-752
    • /
    • 2016
  • In this study, soft carbon was prepared by carbonization of carbon precursor (pitch) obtained from PFO (pyrolysis fuel oil) heat treatment. Three carbon precursors prepared by the thermal reaction were 3903 (at $390^{\circ}C$ for 3 h), 4001 (at $400^{\circ}C$ for 1 h) and 4002 (at $400^{\circ}C$ for 2 h). After the prepared soft carbon was ground to a particle size of $25{\sim}35^{\circ}C$, the soft carbon was synthesised by the chemical treatment with boric acid ($H_3BO_3$). The prepared soft carbon were analysed by XRD, FE-SEM and XPS. Also, the electrochemical performances of soft carbon were investigated by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC=1:1 vol%+VC 3 wt%). The coin cell using soft carbon of $25{\sim}35^{\circ}C$ with 3903 soft carbon ($H_3BO_3$/Pitch=3:100 in weight) has better initial capacity and efficiency (330 mAh/g, 82%) than those of other coin cells. Also, it was found that the retention rate capability of 2C/0.1C was 90% after 30 cycles.

Electrochemical Properties of Needle Coke through a Simple Carbon Coating Process for Lithium Ion Battery (침상 코크스의 피치 코팅에 따른 리튬 이차전지 탄소계 음극소재의 전기화학적 특성)

  • Hwang, Jin Ung;Lee, Jong Dae;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.514-519
    • /
    • 2020
  • Graphite materials for lithium ion battery anode materials are the most commercially available due to their structural stability and low price. Recently, research efforts have been conducted on carbon coatings by improving side reactions at the edge site of carbon materials. The carbon coating process has classified into a CVD by chemical reaction, wet coating process with solvent and dry coating by mechanical impact. In this paper, the rapid crush/coating process was used to solve the problem of which only few parts of the carbon precursor (pitch) can be used and also environmental problems caused by solvent removal in the wet coating process. When the ratio of needle coke to pitch was 8 : 2 wt%, and the rapid crush/coating process was carried out, it was confirmed that the fracture surface was coated by pitch. The pitch-coated sample was treated at 2400 ℃ and 41.8% improvement in 10C/0.1C rate characteristic was observed. It is considered that the material simply manufactured through the simple crush/coating process can be used as an anode electrode material for a lithium ion battery.

Ordered Macropores Prepared in p-Type Silicon (P-형 실리콘에 형성된 정렬된 매크로 공극)

  • Kim, Jae-Hyun;Kim, Gang-Phil;Ryu, Hong-Keun;Suh, Hong-Suk;Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.241-241
    • /
    • 2008
  • Macrofore formation in silicon and other semiconductors using electrochemical etching processes has been, in the last years, a subject of great attention of both theory and practice. Its first reason of concern is new areas of macropore silicone applications arising from microelectromechanical systems processing (MEMS), membrane techniques, solar cells, sensors, photonic crystals, and new technologies like a silicon-on-nothing (SON) technology. Its formation mechanism with a rich variety of controllable microstructures and their many potential applications have been studied extensively recently. Porous silicon is formed by anodic etching of crystalline silicon in hydrofluoric acid. During the etching process holes are required to enable the dissolution of the silicon anode. For p-type silicon, holes are the majority charge carriers, therefore porous silicon can be formed under the action of a positive bias on the silicon anode. For n-type silicon, holes to dissolve silicon is supplied by illuminating n-type silicon with above-band-gap light which allows sufficient generation of holes. To make a desired three-dimensional nano- or micro-structures, pre-structuring the masked surface in KOH solution to form a periodic array of etch pits before electrochemical etching. Due to enhanced electric field, the holes are efficiently collected at the pore tips for etching. The depletion of holes in the space charge region prevents silicon dissolution at the sidewalls, enabling anisotropic etching for the trenches. This is correct theoretical explanation for n-type Si etching. However, there are a few experimental repors in p-type silicon, while a number of theoretical models have been worked out to explain experimental dependence observed. To perform ordered macrofore formaion for p-type silicon, various kinds of mask patterns to make initial KOH etch pits were used. In order to understand the roles played by the kinds of etching solution in the formation of pillar arrays, we have undertaken a systematic study of the solvent effects in mixtures of HF, N-dimethylformamide (DMF), iso-propanol, and mixtures of HF with water on the macrofore structure formation on monocrystalline p-type silicon with a resistivity varying between 10 ~ 0.01 $\Omega$ cm. The etching solution including the iso-propanol produced a best three dimensional pillar structures. The experimental results are discussed on the base of Lehmann's comprehensive model based on SCR width.

  • PDF

Electrochemical Characteristics of Sn Added Li4Ti5O12 as an Anode Material (Sn이 첨가된 Li4Ti5O12 음극활물질의 전기화학적 특성)

  • Jeong, Choong-Hoon;Kim, Sun-Ah;Cho, Byung-Won;Na, Byung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.16-21
    • /
    • 2011
  • $Li_4Sn_xTi_{5-x}O_{12}$ was manufactured by high energy ball milling (HEBM) and used as an anode material for lithium ion battery. Various amount of $SnO_2$was added to $Li_4Ti_5O_{12}$ and heated at different temperatures. The purpose of this research was to see the effect of $SnO_2$ addition into $Li_4Ti_5O_{12}$. Manufactured samples were analyzed by TGA, XRD, SEM, PSA. Battery cycler was used to test the charge/discharge properties of active materials. Heat treatment temperature of $800^{\circ}C$ was needed to make a stable structure of $Li_4Sn_xTi_{5-x}O_{12}$ and the particle size distribution was $0.2{\sim}0.6\;{\mu}m$. Charge/discharge process was repeated for 50 cycles at room temperature. The initial capacity was 168mAh/g and the voltage plateau was observed at 1.55V(Li/$Li^+$).

A Study on the Frictional Characteristics of Fiber Reinforced Composites under Corrosive Environment (부식 환경 하에서의 섬유강화복합재료의 마찰 및 마모 특성 연구)

  • Choong-Yong Park;Dong-Hyun Park;Soo-Jeong Park;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.37-41
    • /
    • 2023
  • The treated water inside the ballast electrolytic cell creates a highly alkaline atmosphere due to hydroxide generated at the DSA(Dimension Stable Anode) electrode during electrolysis. In this study, a composite material that can replace the weakness of the PE-coated steel pipe used in the existing ballast pipe was prepared. The test samples are BRE(Basalt fiber reinforced epoxy), BRP(Basalt fiber reinforced unsaturated polyester), GRE(Glass fiber reinforced epoxy), and GRP(Glass fiber reinforced unsaturated polyester). And then it was immersed in NaOH for 720 hours. The friction test of each specimen was conducted. The Friction coefficient analysis according to material friction depth and interfacial adhesion behavior between resin and fiber were analyzed. As a result, the mechanism of interfacial separation between resin and fiber could be analyzed. In the case of the unsaturated polyester resin with low interfacial bonding strength the longer the immersion time in the alkaline solution, the faster the internal deterioration caused by the deterioration that started from the surface, resulting in a decrease in the friction coefficient. It is hoped that this study will help to understand the degradation behavior of composite materials immersed in various chemical solutions such as NaOH, acid, and sodium hypochlorite in the future.

A Study on the Optimal Make of X-ray Ionizer using the Monte Carlo N-Particle Extended Code(II) (Monte Carlo N-Particle Extended Code를 이용한 연 X선 정전기제거장치의 최적제작에 관한 연구(II))

  • Jeong, Phil Hoon;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.29-33
    • /
    • 2017
  • In order to solve this sort of electrostatic failure in Display and Semiconductor process, Soft X-ray ionizer is mainly used. Soft X-ray Ionizer does not only generate electrical noise and minute particle but also is efficient to remove electrostatic as it has a wide range of ionization. There exist variable factors such as type of tungsten thickness deposited on target, Anode voltage etc., and it takes a lot of time and financial resource to find optimal performance by manufacturing with actual X-ray tube source. Here, MCNPX (Monte Carlo N-Particle Extended) is used for simulation to solve this kind of problem, and optimum efficiency of X-ray generation is anticipated. In this study, X-ray generation efficiency was compared according to target material thickness using MCNPX and actual X-ray tube source under the conditions that tube voltage is 5 keV, 10 keV, 15 keV and the target Material is Tungsten(W). At the result, In Tube voltage 5 keV and distance 100 mm, optimal target thickness is $0.05{\mu}m$ and fastest decay time appears + decay time 0.28 sec. - deacy time 0.30 sec. In Tube voltage 10keV and distance 100 mm, optimal target Thickness is $0.16{\mu}m$ and fastest decay time appears + decay time 0.13 sec. - deacy time 0.12 sec. In the tube voltage 15 keV and distance 100 mm, optimal target Thickness is $0.28{\mu}m$ and fastest decay time appears + decay time 0.04 sec. - deacy time 0.05 sec.

Development and Application of Electrode for a New Secondary Aqueous Cell (새로운 수용성 2차 전지용 전극의 개발과 응용)

  • Hwang, Kum-Sho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.2
    • /
    • pp.165-170
    • /
    • 2005
  • Al-Zn alloy/$MnO_2$, seawater cell was considered as a primary aqueous cell with an average voltage range from 1.0 to 1.1V, and the electrolyte of seawater was uptaken into the cell. Eventually, the capacity of its usage will be used for long-term. However, the more use of this cell, the higher corrosion phenomenon of the electrode occurred. Due to its corrosion phenomenon, one main default has been observed with gradual decrease during a discharge process. In this research, a common-used active material for anode was $LiNiO_2$. An active material for cathode, $Zn_{X}FeS_2$ was synthesized in high temperature by uptaken a small amount of 1.3 wt% of ZnS into $FeS_2$, one of the transition-metal dichalcogenides in high temperature. Consequently, based on their usages shown above, this secondary aqueous lithium cell could be more developed. This cell was shown as remarkable charge/discharge performance during the charge/discharge processes. This cathode with active material was given a considerable efficiency of inserting $Li^+$ ions. Moreever, in accordance with the characteristic of the crystal structure for $Zn_{x}FeS_2$, a small amount of ZnS was added which made it possible to reduce prominently velocity of corrosion during the charge/discharge cycle. By applying those merits, Al-Zn alloy/$MnO_2$ seawater cell will be used as a fundamental data in order to transform into a secondary aqueous cell.

Comparison of Two-Types Compositions of Mixed Salts in Fused Salt Electrolysis of Magnesium (마그네슘의 용융염전해시(熔融鹽電解時) 두 가지 염욕조성(鹽浴組成)의 비교실험)

  • Park, Hyung-Kyu;Park, Jin-Tae;Choi, Young-Yoon
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.32-36
    • /
    • 2006
  • Magnesium has been used as light and functional material, and its demand is increasing as a material for automobile engine and for mobile phone or notebook PC case. Fused salt electrolysis and thermal reduction are regarded as main methods for the extraction of magnesium, and choice for the method is firstly according to raw material. In this study, magnesium metal is obtained by an electrolysis of magnesium chloride. Two types of fused salt mixtures were used as electrolyte and electrolyzed at 7V with a graphite anode having the same depth, and their results were compared with each other. A mixed salt of $KCl/NaCl/MgCl_2$ was the more effective than $KCl/NaCl/CaCl_2/CaF_2/MgCl_2$ in current efficiency through the experiments at $760^{\circ}C$. Purity of the prepared magnesium metal was above 98%. Some basic data for scale-up of the magnesium electrolysis equipment, which would be necessary for a commercialization, could be obtained.

Development of Polymer Electrolyte Membranes Using Dipole-dipole Interaction for Fuel Cell Applications (쌍극자-쌍극자 상호작용 형성을 이용한 향상된 기능의 연료전지용 고분자 전해질 막의 개발)

  • Won, Mihee;Kwon, Sohyun;Kim, Tae-Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.413-422
    • /
    • 2015
  • Proton exchange membrane (PEM), which transfers proton from the anode to the cathode, is the key component of the proton exchange membrane fuel cell (PEMFC). Nafion is widely used as PEM due to its high proton conductivity as well as excellent chemical and physical stabilities. However, its high cost and the environmental hazards limit the commercial application in PEMFCs. To overcome these disadvantages, various alternative polymer electrolytes have been investigated for fuel cell applications. We used densely sulfonated polymers to maximize the ion conductivity of the corresponding membrane. To overcome high swelling, dipole-dipole interaction was used by introducing nitrile groups into the polymer backbone. As a result, physically-crosslinked membranes showed improved swelling ratio despite of high water uptake. All the membranes with different hydrophilic-hydrophobic compositions showed higher conductivity, despite their lower IEC, than that of Nafion-117.

Biomass Waste, Coffee Grounds-derived Carbon for Lithium Storage

  • Um, Ji Hyun;Kim, Yunok;Ahn, Chi-Yeong;Kim, Jinsoo;Sung, Yung-Eun;Cho, Yong-Hun;Kim, Seung-Soo;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.163-168
    • /
    • 2018
  • Biomass waste-derived carbon is an attractive alternative with environmental benignity to obtain carbon material. In this study, we prepare carbon from coffee grounds as a biomass precursor using a simple, inexpensive, and environmentally friendly method through physical activation using only steam. The coffee-derived carbon, having a micropore-rich structure and a low extent of graphitization of disordered carbon, is developed and directly applied to lithium-ion battery anode material. Compared with the introduction of the Ketjenblack (KB) conducting agent (i.e., coffee-derived carbon with KB), the coffee-derived carbon itself achieves a reversible capacity of ~200 mAh/g (0.54 lithium per 6 carbons) at a current density of 100 mA/g after 100 cycles, along with excellent cycle stability. The origin of highly reversible lithium storage is attributed to the consistent diffusion-controlled intercalation/de-intercalation reaction in cycle life, which suggests that the bulk diffusion of lithium is favorable in the coffee-derived carbon itself, in the absence of a conducting agent. This study presents the preparation of carbon material through physical activation without the use of chemical activation agents and demonstrates an application of coffee-derived carbon in energy storage devices.