Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2021R1I1A3059728). This work was also supported by the Technology Innovation Program (no. 20015759) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no. 2018R1A6A1A03026005).
References
- A. L. Mong, Q. X. Shi, H. Jeon, Y. S. Ye, X. L. Xie, and D. Kim, Tough and flexible, super ion-conductive electrolyte membranes for lithium-based secondary battery applications, Adv. Funct. Mater., 31(12), 2008586 (2021).
- X. Hu, Z. Deng, X. Lin, Y. Xie, and R. Teodorescu, Research directions for next-generation battery management solutions in automotive applications, Renew. Sustain. Energy Rev., 152, 111695 (2021).
- M. Li, J. Lu, Z. Chen, and K. Amine, 30 years of lithium-ion batteries, Adv. Mater., 30(33), 1800561 (2018).
- T. Kim, W. Song, D.-Y. Son, L. K. Ono, and Y. Qi, Lithium-ion batteries: outlook on present, future, and hybridized technologies, J. Mater. Chem. A, 7, 2942-2964 (2019). https://doi.org/10.1039/C8TA10513H
- Z. Liu, Y. Jiang, Q. Hu, S. Guo, L. Yu, Q. Li, Q. Liu, and X. Hu, Safer lithium-ion batteries from the separator aspect: Development and future perspectives, Energy Environ. Mater., 4(3), 336-362 (2021).
- X. Chen, W. Shen, T. T. Vo, Z. Cao, and A. Kapoor, An overview of lithium-ion batteries for electric vehicles, 2012 10th International Power & Energy Conference (IPEC), Ho Chi Minh City, Vietnam, 230-235 (2012).
- B. E. Murdock, K. E. Toghill, and N. Tapia-Ruiz, A perspective on the sustainability of cathode materials used in lithium-ion batteries, Adv. Energy Mater., 11(39), 2102028 (2021).
- H. S. Oktaviano, K. Yamada, and K. Waki, Nano-drilled multiwalled carbon nanotubes: characterizations and application for LIB anode materials, J. Mater. Chem., 22, 25167-25173 (2012). https://doi.org/10.1039/c2jm34684b
- S. Zhang, G. Yang, Z. Liu, X. Li, X. Wang, R. Chen, F. Wu, Z. Wang, and L. Chen, Competitive solvation enhanced stability of lithium metal anode in dual-salt electrolyte, Nano Lett., 21(7), 3310-3317 (2021). https://doi.org/10.1021/acs.nanolett.1c00848
- M. Noel and V. Suryanarayanan, Role of carbon host lattices in Li-ion intercalation/de-intercalation processes, J. Power sources, 111(2), 193-209 (2002). https://doi.org/10.1016/S0378-7753(02)00308-7
- S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood III, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 105, 52-76 (2016). https://doi.org/10.1016/j.carbon.2016.04.008
- J. Ahn, M. Kim, J. Seo, S. Yoon, and K. Y. Cho, Delineating the relationship between separator parameters and practical lithium metal batteries characteristics, J. Power Sources, 566, 232931 (2023).
- B. Wu, S. Wang, J. Lochala, D. Desrochers, B. Liu, W. Zhang, J. Yang, and J. Xiao, The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries, Energy Environ. Sci., 11, 1803-1810 (2018). https://doi.org/10.1039/C8EE00540K
- Y. Wang, Q. Li, and Y. Xing, Porosity variation of lithium-ion battery separators under uniaxial tension, Int. J. Mech. Sci., 174, 105496 (2020).
- J.-A. Choi, S. H. Kim, and D.-W. Kim, Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators, J. Power Sources, 195(18), 6192-6196 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.020
- W. Tang, T. Zhao, K. Wang, T. Yu, R. Lv, L. Li, F. Wu, and R. Chen, Dendrite-free lithium metal batteries enabled by coordination chemistry in polymer-ceramic modified separators, Adv. Funct. Mater., 34(18), 2314045 (2024).
- R. Pan, R. Sun, Z. Wang, J. Lindh, K. Edstrom, M. Stromme, and L. Nyholm, Double-sided conductive separators for lithium-metal batteries, Energy Storage Mater., 21, 464-473 (2019).
- H. Ye, S. Xin, Y. X. Yin, and Y. G. Guo, Advanced porous carbon materials for high-efficient lithium metal anodes, Adv. Energy Mater., 7(23), 1700530 (2017).
- Z. Liu, S. Ha, Y. Liu, F. Wang, F. Tao, B. Xu, R. Yu, G. Wang, F. Ren, and H. Li, Application of Ag-based materials in high-performance lithium metal anode: A review, J. Mater. Sci. Technol., 133, 165-182 (2023). https://doi.org/10.1016/j.jmst.2022.06.015
- F. Guo, C. Wu, H. Chen, F. Zhong, X. Ai, H. Yang, and J. Qian, Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode, Energy Storage Mater., 24, 635-643 (2020). https://doi.org/10.1016/j.ensm.2019.06.010
- M. Takeno, T. Fukutsuka, K. Miyazaki, and T. Abe, Influence of carbonaceous materials on electronic conduction in electrode-slurry, Carbon, 122, 202-206 (2017). https://doi.org/10.1016/j.carbon.2017.06.072
- Y. Yang, J. Xiong, J. Zeng, J. Huang, and J. Zhao, VGCF 3D conducting host coating on glass fiber filters for lithium metal anodes, Chem. Commun., 54, 1178-1181 (2018). https://doi.org/10.1039/C7CC07828E
- S. Kennedy, J. Kim, J. Kim, I. Phiri, and S.-Y. Ryou, Water-based dual polymer ceramic-coated composite separator for high-energy-density lithium secondary batteries, J. Ind. Eng. Chem., 130, 638-647 (2024). https://doi.org/10.1016/j.jiec.2023.10.017
- X. Wu, Z. Wang, L. Chen, and X. Huang, Ag-enhanced SEI formation on Si particles for lithium batteries, Electrochem. Commun., 5(11), 935-939 (2003). https://doi.org/10.1016/j.elecom.2003.09.001
- J. Oh, H. Jo, H. Lee, H.-T. Kim, Y. M. Lee, and M.-H. Ryou, Polydopamine-treated three-dimensional carbon fiber-coated separator for achieving high-performance lithium metal batteries, J. Power Sources, 430, 130-136 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.003
- C. Yang, Y. Yao, S. He, H. Xie, E. Hitz, and L. Hu, Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode, Adv. Mater., 29(38), 1702714 (2017).