DOI QR코드

DOI QR Code

Electrochemical Performance on the H3BO3 Treated Soft Carbon modified from PFO as Anode Material

음극소재로 PFO에서 개질된 붕산처리 소프트 카본의 전기화학적 성능

  • Lee, Ho Yong (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2016.07.04
  • Accepted : 2016.08.30
  • Published : 2016.12.01

Abstract

In this study, soft carbon was prepared by carbonization of carbon precursor (pitch) obtained from PFO (pyrolysis fuel oil) heat treatment. Three carbon precursors prepared by the thermal reaction were 3903 (at $390^{\circ}C$ for 3 h), 4001 (at $400^{\circ}C$ for 1 h) and 4002 (at $400^{\circ}C$ for 2 h). After the prepared soft carbon was ground to a particle size of $25{\sim}35^{\circ}C$, the soft carbon was synthesised by the chemical treatment with boric acid ($H_3BO_3$). The prepared soft carbon were analysed by XRD, FE-SEM and XPS. Also, the electrochemical performances of soft carbon were investigated by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC=1:1 vol%+VC 3 wt%). The coin cell using soft carbon of $25{\sim}35^{\circ}C$ with 3903 soft carbon ($H_3BO_3$/Pitch=3:100 in weight) has better initial capacity and efficiency (330 mAh/g, 82%) than those of other coin cells. Also, it was found that the retention rate capability of 2C/0.1C was 90% after 30 cycles.

본 연구에서는 열처리된 석유계 잔사유(pyrolysis fuel oil)부터 얻어진 탄소 전구체(피치)를 탄화시켜 소프트 카본을 제조하였다. 세 종류의 탄소 전구체는 3903($390^{\circ}C$, 3 h), 4001($400^{\circ}C$, 1 h), 4002($400^{\circ}C$, 2 h) 열 반응에 의해 준비되었다. 제조된 소프트 카본 음극소재의 입도를 $25{\sim}35{\mu}m$로 균일하게 한 후 붕산 첨가량을 달리하여 열처리를 통해 붕산 처리된 소프트 카본을 얻었다. 붕산처리를 통해 제조된 소프트 카본의 물리적 특성을 확인하기 위하여 XRD, FE-SEM, XPS 분석을 실시하였다. 또한 $LiPF_6$ (EC : DMC=1:1 vol%+VC 3wt%) 전해질을 사용하여 충 방전, 율속, 순환 전압 전류 시험, 임피던스 등과 같은 전기화학적 테스트를 수행하여 붕산 처리된 소프트 카본 음극 소재의 성능을 조사하였다. $25{\sim}35{\mu}m$의 입도를 가지는 3903 소프트 카본($H_3BO_3$/Pitch=3:100 중량비)을 이용한 전지의 용량 및 초기 효율은 330 mAh/g, 82%로 다른 합성물보다 우수한 결과를 보였다. 또한 2C/0.1C 속도특성은 90%임을 보였다.

Keywords

References

  1. Jeon, B. J., Kang, S. W. and Lee, J. K., "Electrochemical Characteristics of Silicon Coated Graphite Prepared by Gas Suspension Spray Method for Anode Material of Lithium Secondary Batteries," Korean Journal of Chemical Engineering, 23(5), 854-859(2006). https://doi.org/10.1007/BF02705940
  2. Park, J. Y. and Lee, J. D., "Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material," Korean Chemical Engineering Research, 54(1), 16-21(2016). https://doi.org/10.9713/kcer.2016.54.1.16
  3. Maa, C., Zhaoc, Y., Lia, J., Songa, Y., Shia, J., Guoa, Q. and Liua, L., "The Electrochemical Performance of Pitch Coke Anodes Containing Hollow Carbon Nanostructures and Nickel Nanoparticles for High-power Lithium Ion Batteries," Electrochimica Acta, 112, 394-402(2013). https://doi.org/10.1016/j.electacta.2013.08.129
  4. Yang, Y. S., Wang, C. Y., Chen, M. M., Shi, Z. Q. and Zheng, J. M., "Facile Synthesis of Mesophase Pitch/exfoliated Graphite Nanoplatelets Nanocomposite and Its Application as Anode Materials for Lithium-ion Batteries," Journal of Solid State Chemistry, 183(9), 2116-2120(2010). https://doi.org/10.1016/j.jssc.2010.07.011
  5. Jafaria, S. M., Khosravia, M. and Mollazadehb, M., "Nanoporous Hard Carbon Microspheres as Anode Active Material of Lithium Ion Battery," Electrochimica Acta, 203, 9-20(2016). https://doi.org/10.1016/j.electacta.2016.03.028
  6. Zhang, L., Xia, G., Guo, Z., Sun, D., Li, X. and Yu, X., "In Situ Fabrication of Three-dimensional Nitrogen and Boron co-doped Porous Carbon Nanofibers for High Performance Lithium-ion Batteries," Journal of Power Sources, 324, 294-301(2016). https://doi.org/10.1016/j.jpowsour.2016.05.057
  7. Park, M. S., Lee, J., Lee, J. W., Kim, K. J., Jo, Y. N., Woo, S. G. and Kim, Y. J., "Tuning the Surface Chemistry of Natural Graphite Anode by $H_3PO_4$ and $H_3BO_3$ Treatments for Improving Electrochemical and Thermal Properties," Carbon, 62, 278-287(2013). https://doi.org/10.1016/j.carbon.2013.05.065
  8. Putri, L. K., Ong, W. J., Chang, W. S. and Chai, S. P., "Heteroatom Doped Graphene in Photocatalysis: A Review," Applied Surface Science, 358, 2-14(2015). https://doi.org/10.1016/j.apsusc.2015.08.177
  9. Jeong, J. H., Jung, D. W., Shin, E. W. and Oh, E. S., "Boron-doped $TiO_2$ Anode Materials for High-rate Lithium Ion Batteries," Journal of Alloys and Compounds, 604, 226-232(2014). https://doi.org/10.1016/j.jallcom.2014.03.069
  10. Rodriguez, E., Camean, I., Garcia, R. and Garcia, A. B., "Graphitized Boron-doped Carbon Foams: Performance as Anodes in Lithium- ion Batteries," Electrochimica Acta, 56, 5090-5094(2011). https://doi.org/10.1016/j.electacta.2011.03.078
  11. Kim, J. H., Lee, S. H. and Lee, Y. S., "Preparation of Pitch for Melt-electrospinning from Naphtha Cracking Bottom Oil," Applied Chemistry for Engineering, 24(4), 402-406(2013).
  12. Kim, M. C., Eom, S. Y., Ryu, S. K. and Edie, D. D., "Reformation of Naphtha Cracking Bottom Oil for the Preparation of Carbon Fiber Precursor Pitch," Korean Chem. Eng. Res., 43(6), 745-750 (2005).
  13. Wang, H., Ma, C., Yang, X., Han, T., Tao, Z., Song, Y., Liu, Z., Guo, Q. and Liu, L., "Fabrication of Boron-doped Carbon Fibers by the Decomposition of $B_4C$ and Its Excellent Rate Performance as An Anode Material for Lithiumion Batteries," Solid State Sciences, 41, 36-42(2015). https://doi.org/10.1016/j.solidstatesciences.2015.02.003
  14. Li, H., Tay, R. Y., Tsang, S. H., Liu, W. and Teo, E. H. T., "Reduced Graphene Oxide/Boron Nitride Composite Film as a Novel Binder-Free Anode for Lithium Ion Batteries with Enhanced Performances," Electrochimica Acta, 166, 197-205(2015). https://doi.org/10.1016/j.electacta.2015.03.109
  15. Wu, Y. P., Rahm, E. and Holze, R., "Effects of Heteroatoms on Electrochemical Performance of Electrode Materials for Lithium Ion Batteries," Electrochimica Acta, 47, 3491-3507(2002). https://doi.org/10.1016/S0013-4686(02)00317-1
  16. Wanga, H., Ikedaa, T., Fukudab, K. and Yoshio, M., "Effect of Milling on the Electrochemical Performance of Natural Graphite as an Anode Material for Lithium-ion Battery," Journal of Power Sources, 83, 141-147(1999). https://doi.org/10.1016/S0378-7753(99)00288-8
  17. Aurbach, D., Markovsky, B., Weissman, I., Levia, E. and Ein-Eli, Y., "On the Correlation Between Surface Chemistry and Performance of Graphite Negative Electrodes for Li ion Batteries," Electrochimica Acta, 45(1), 67-86(1999). https://doi.org/10.1016/S0013-4686(99)00194-2

Cited by

  1. 상용 고용량 리튬이온이차전지용 NCA 양극활물질의 전기화학적 특성 vol.55, pp.2, 2016, https://doi.org/10.9713/kcer.2017.55.2.163