Browse > Article

Preparation of Chlorine Dioxide Aqueous Solution by Un-divided Electrochemical Cell using RuO2 anode  

Kwon, Tae Ok (Department of Chemical Engineering, Sunchon National University)
Park, Bo Bae (Department of Chemical Engineering, Sunchon National University)
Roh, Hyun Cheul (Department of Chemical Engineering, Sunchon National University)
Moon, Il Shik (Department of Chemical Engineering, Sunchon National University)
Publication Information
Applied Chemistry for Engineering / v.20, no.3, 2009 , pp. 296-300 More about this Journal
Abstract
Generation of chlorine dioxide ($ClO_2$) was studied by the un-divided electrochemical cell system using $RuO_2$ anode material. Sodium chlorite ($NaClO_2$) was used as a precursor compound of chlorine dioxide. Effect of various operating parameters such as feed solution flow rate, initial solution pH, $NaClO_2$ and NaCl conc., and applied current density on the produced chlorine dioxide concentration and solution pH were investigated in un-divided electrochemical cell system. Produced chlorine dioxide concentration and solution pH were strongly depends on the initial solution pH and feed solution flow rate. Sodium chloride (NaCl) was not only good electrolyte, it was also used as a raw material of chlorine dioxide with $NaClO_2$. Observed optimum conditions were flow rate of feed solution (90 mL/min), initial pH (2.3), $NaClO_2$ concentration (4.7 mM), NaCl concentration (100 mM), and current density ($5A/dm^2$). Produced chlorine dioxide concentration was around 350 mg/L and solution pH was around 3.
Keywords
un-divided cell; $RuO_2/Ti$; chlorine dioxide; sodium chlorite; disinfectant;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 W. C. Fu, Q. J. Peng, and C. Huang, Chem. Eng. Commun., 193, 1110 (2006)   DOI   ScienceOn
2 C. J. Volk, R. Hofmann, C. Chauret, G. A. Gagnon, G. Ranger, and R. C. Andrews, J. Environ. Eng. Sci., 1, 323 (2002)   DOI   ScienceOn
3 K. Macounova, M. Makarova, J. Jirkovsky, J. France, and P. Krtil, Electrochim. Acta., 53, 6126 (2008)   DOI   ScienceOn
4 X. B. Sun, F. Y. Cui, J. S. Zhang, F. Xu, and L. J. Liu, J. Hazard. Mater., 142, 348 (2007)   DOI   PUBMED   ScienceOn
5 B. Casini, P. Valentini, A. Baggiani, F. Torracca, S. Frateschi, L. Ceccherini Nelli, and G. Privitera, J. Hosp. Infect., 69, 141 (2008)   DOI   ScienceOn
6 G. Yin and Y. Ni, Ind. Eng. Chem. Res., 38, 3319 (1999)   DOI   ScienceOn
7 S. Navalon, M. Alvaro, and H. Garcia, J. Hazard. Mater., 164, 1089 (2009)   DOI   PUBMED   ScienceOn
8 B. R. Deshwal and H. K. Lee, J. Ind. Eng. Chem., 11, 125 (2005)
9 S. Navalon, M. Alvaro, and H. Garcia, Water Res., 42, 1935 (2008)   DOI   ScienceOn
10 Y. J. Lee, H. T. Kim, and U. G. Lee, Korean J. Chem. Eng., 21, 647 (2004)   DOI   ScienceOn
11 H. Y. Shin, Y. J. Lee, I. Y. Park, J. Y. Kim, S. J. Oh, and K. B. Song, J. Korean Soc. Appl. Biol. Chem., 50, 42 (2007)
12 K. C. Pillai, T. O. Kwon, B. B. Park, and I. S. Moon, J. Hazard. Mater., 164, 812 (2009)   DOI   PUBMED   ScienceOn
13 B. R. Deshwal and H. K. Lee, J. Hazard. Mater., B108, 173 (2004)
14 H. Bergmann and S. Koparal, Electrochim. Acta., 50, 5218 (2005)   DOI   ScienceOn
15 D. R. Svenson, J. F. Kadla, H. M. Chang, and H. Jameel, Ind. Eng. Chem. Res., 41, 5927 (2002)   DOI   ScienceOn
16 Y. Y. Jin, Y. J. Kim, K. S. Chung, M. Won, and K. B. Song, Food Sci. Biotechnol., 16, 1018 (2007)
17 L. Jinquan, H. Junli, S. Liqiang, C. Xiangyu, and J. Ying, Sci. China Ser. B-Chem., 49, 565 (2006)   DOI   ScienceOn