• Title/Summary/Keyword: Annihilating-ideal graph

Search Result 6, Processing Time 0.015 seconds

AN EXTENSION OF ANNIHILATING-IDEAL GRAPH OF COMMUTATIVE RINGS

  • Kerahroodi, Mahtab Koohi;Nabaei, Fatemeh
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1045-1056
    • /
    • 2020
  • Let R be a commutative ring with unity. The extension of annihilating-ideal graph of R, $^{\bar{\mathbb{AG}}}$(R), is the graph whose vertices are nonzero annihilating ideals of R and two distinct vertices I and J are adjacent if and only if there exist n, m ∈ ℕ such that InJm = (0) with In, Jm ≠ (0). First, we differentiate when 𝔸𝔾(R) and $^{\bar{\mathbb{AG}}}$(R) coincide. Then, we have characterized the diameter and the girth of $^{\bar{\mathbb{AG}}}$(R) when R is a finite direct products of rings. Moreover, we show that $^{\bar{\mathbb{AG}}}$(R) contains a cycle, if $^{\bar{\mathbb{AG}}}$(R) ≠ 𝔸𝔾(R).

THE TOTAL GRAPH OF NON-ZERO ANNIHILATING IDEALS OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.379-395
    • /
    • 2018
  • Assume that R is a commutative ring with non-zero identity which is not an integral domain. An ideal I of R is called an annihilating ideal if there exists a non-zero element $a{\in}R$ such that Ia = 0. S. Visweswaran and H. D. Patel associated a graph with the set of all non-zero annihilating ideals of R, denoted by ${\Omega}(R)$, as the graph with the vertex-set $A(R)^*$, the set of all non-zero annihilating ideals of R, and two distinct vertices I and J are adjacent if I + J is an annihilating ideal. In this paper, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[x])$. Also, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[[x]])$, whenever R is a Noetherian ring. In addition, we investigate the relations between the diameters of this graph and the zero-divisor graph. Moreover, we study some combinatorial properties of ${\Omega}(R)$ such as domination number and independence number. Furthermore, we study the complement of this graph.

ON RINGS WHOSE ANNIHILATING-IDEAL GRAPHS ARE BLOW-UPS OF A CLASS OF BOOLEAN GRAPHS

  • Guo, Jin;Wu, Tongsuo;Yu, Houyi
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.847-865
    • /
    • 2017
  • For a finite or an infinite set X, let $2^X$ be the power set of X. A class of simple graph, called strong Boolean graph, is defined on the vertex set $2^X{\setminus}\{X,{\emptyset}\}$, with M adjacent to N if $M{\cap}N={\emptyset}$. In this paper, we characterize the annihilating-ideal graphs $\mathbb{AG}(R)$ that are blow-ups of strong Boolean graphs, complemented graphs and preatomic graphs respectively. In particular, for a commutative ring R such that AG(R) has a maximum clique S with $3{\leq}{\mid}V(S){\mid}{\leq}{\infty}$, we prove that $\mathbb{AG}(R)$ is a blow-up of a strong Boolean graph if and only if it is a complemented graph, if and only if R is a reduced ring. If assume further that R is decomposable, then we prove that $\mathbb{AG}(R)$ is a blow-up of a strong Boolean graph if and only if it is a blow-up of a pre-atomic graph. We also study the clique number and chromatic number of the graph $\mathbb{AG}(R)$.

THE ANNIHILATING-IDEAL GRAPH OF A RING

  • ALINIAEIFARD, FARID;BEHBOODI, MAHMOOD;LI, YUANLIN
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1323-1336
    • /
    • 2015
  • Let S be a semigroup with 0 and R be a ring with 1. We extend the definition of the zero-divisor graphs of commutative semigroups to not necessarily commutative semigroups. We define an annihilating-ideal graph of a ring as a special type of zero-divisor graph of a semigroup. We introduce two ways to define the zero-divisor graphs of semigroups. The first definition gives a directed graph ${\Gamma}$(S), and the other definition yields an undirected graph ${\overline{\Gamma}}$(S). It is shown that ${\Gamma}$(S) is not necessarily connected, but ${\overline{\Gamma}}$(S) is always connected and diam$({\overline{\Gamma}}(S)){\leq}3$. For a ring R define a directed graph ${\mathbb{APOG}}(R)$ to be equal to ${\Gamma}({\mathbb{IPO}}(R))$, where ${\mathbb{IPO}}(R)$ is a semigroup consisting of all products of two one-sided ideals of R, and define an undirected graph ${\overline{\mathbb{APOG}}}(R)$ to be equal to ${\overline{\Gamma}}({\mathbb{IPO}}(R))$. We show that R is an Artinian (resp., Noetherian) ring if and only if ${\mathbb{APOG}}(R)$ has DCC (resp., ACC) on some special subset of its vertices. Also, it is shown that ${\overline{\mathbb{APOG}}}(R)$ is a complete graph if and only if either $(D(R))^2=0,R$ is a direct product of two division rings, or R is a local ring with maximal ideal m such that ${\mathbb{IPO}}(R)=\{0,m,m^2,R\}$. Finally, we investigate the diameter and the girth of square matrix rings over commutative rings $M_{n{\times}n}(R)$ where $n{\geq} 2$.

ANNIHILATING CONTENT IN POLYNOMIAL AND POWER SERIES RINGS

  • Abuosba, Emad;Ghanem, Manal
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1403-1418
    • /
    • 2019
  • Let R be a commutative ring with unity. If f(x) is a zero-divisor polynomial such that $f(x)=c_f f_1(x)$ with $c_f{\in}R$ and $f_1(x)$ is not zero-divisor, then $c_f$ is called an annihilating content for f(x). In this case $Ann(f)=Ann(c_f )$. We defined EM-rings to be rings with every zero-divisor polynomial having annihilating content. We showed that the class of EM-rings includes integral domains, principal ideal rings, and PP-rings, while it is included in Armendariz rings, and rings having a.c. condition. Some properties of EM-rings are studied and the zero-divisor graphs ${\Gamma}(R)$ and ${\Gamma}(R[x])$ are related if R was an EM-ring. Some properties of annihilating contents for polynomials are extended to formal power series rings.

ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS

  • Pirzada, Shariefuddin;Raja, Rameez
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1167-1182
    • /
    • 2016
  • Let M be an R-module, where R is a commutative ring with identity 1 and let G(V,E) be a graph. In this paper, we study the graphs associated with modules over commutative rings. We associate three simple graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ to M called full annihilating, semi-annihilating and star-annihilating graph. When M is finite over R, we investigate metric dimensions in $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$. We show that M over R is finite if and only if the metric dimension of the graph $ann_f({\Gamma}(M_R))$ is finite. We further show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if M is a prime-multiplication-like R-module. We investigate the case when M is a free R-module, where R is an integral domain and show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if $$M{\sim_=}R$$. Finally, we characterize all the non-simple weakly virtually divisible modules M for which Ann(M) is a prime ideal and Soc(M) = 0.