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AN EXTENSION OF ANNIHILATING-IDEAL GRAPH OF

COMMUTATIVE RINGS

Mahtab Koohi Kerahroodi and Fatemeh Nabaei

Abstract. Let R be a commutative ring with unity. The extension of

annihilating-ideal graph of R, AG(R), is the graph whose vertices are
nonzero annihilating ideals of R and two distinct vertices I and J are

adjacent if and only if there exist n,m ∈ N such that InJm = (0) with

In, Jm 6= (0). First, we differentiate when AG(R) and AG(R) coincide.

Then, we have characterized the diameter and the girth of AG(R) when

R is a finite direct products of rings. Moreover, we show that AG(R)

contains a cycle, if AG(R) 6= AG(R).

1. Introduction

Throughout this paper all rings are commutative with 1 6= 0. The set of
zero-divisors, the annihilator of an element x, the nilradical and the set of all
ideals of a ring R are denoted by Z(R), Ann(x), Nil(R) and I(R), respectively.
For a nonzero nilpotent element x of R, nx denotes the index of nilpotency of
x. A graph G is connected if there is a path between every two distinct vertices.
For every positive integer n, we denote a path of length n, by Pn. Also, d(x, y)
is the length of the shortest path between x and y for two distinct vertices
x, y ∈ V (G). The girth of G, denoted by gr(G), is defined as the length of
the shortest cycle in G and gr(G) =∞, if G contains no cycles. A complete r-
partite graph is a graph whose vertex set is partitioned into r separated subsets
such that each vertex is joined to every other vertex that is not in the same
subset. For positive integers m and n, the complete graph with n vertices is
denoted by Kn and the complete bipartite graph with parts of sizes m and n
will be denoted by Km,n.

Recall from [3], an ideal I of R is said to be an annihilating ideal if there
exists a nonzero ideal J such that IJ = (0). As in [3], we denote sets of all
annihilating ideals and nonzero annihilating ideals of R by A(R) and A(R)?

respectively. M. Behboodi and Z. Rakeei [3] introduced the concept of the
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annihilating-ideal graph of R, denoted by AG(R). This graph is an undirected
simple graph whose vertex set is A(R)? and distinct vertices I and J are ad-
jacent in AG(R) if and only if IJ = (0). Also, D. Bennis, J. Mikram and F.
Taraza [5] introduced the concept of the extended zero divisor graph of R, de-
noted by Γ(R), such that its vertex set consists of all its nonzero zero divisors
and that two distinct vertices x and y are adjacent if and only if there exist
m,n ∈ N such that xnym = 0 with xn 6= 0 and ym 6= 0.

In this paper, we follow the same approach of [5] and we introduce the
extension of the annihilating-ideal graph of R, AG(R), which we call, following
the terminology of [5], the extended of the annihilating-ideal graph of R, AG(R).
This is a graph whose vertex set is A(R)? and two distinct vertices I and J
are adjacent if and only if there exist n,m ∈ N such that InJm = (0) with
In, Jm 6= (0). It is obvious that AG(R) is a subgraph of AG(R). Also, note
that AG(R) is the empty graph if and only if R is an integral domain.

In Section 2, we discuss about the question of when AG(R) and AG(R)
coincide. Among other results, we investigate some conditions on rings such
that the annihilating-ideal graph of finite direct product of rings and extended
graph of them are the same. Section 3 is devoted to study the diameter of
the extended graph. In Theorem 3.2, we study when a vertex in AG(R) is
adjacent to every other vertex. Using this theorem we determine when Z(R)
is an ideal. Finally, in Section 4, we study the girth of AG(R). It is shown
in Theorem 4.2, when AG(R) contains a cycle. Moreover, in Theorem 4.5, by
considering a ring with some properties is proven that gr(AG(R)) 6= 4. Among
other results, in Theorem 4.6, under some conditions is shown that AG(R) is
a complete bipartite graph.

2. When do AG(R) and AG(R) coincide?

Let R be a commutative ring with unity and I(R) be the set of ideals of R.
We set

NI(R) = {J ∈ I(R) : ∃n ∈ N \ {1}, Jn = (0)},
A(R) = {J ∈ I(R) : ∃K ∈ I(R)?, JK = (0)} and

A(R)? = A(R) \ {(0)}.
Definition. Extension of annihilating-ideal graph AG(R), denoted by AG(R),
is the simple graph whose vertex set is A(R)? and two distinct vertices I and
J are adjacent if and only if there exist n,m ∈ N such that InJm = (0) with
In, Jm 6= (0).

We are interested in the study of a ring R with nonzero ideals, whose AG(R)
and AG(R) coincide. The following lemma extends [5, Lemma 2.2] and has a
key role in the proof of the main results of this section. Recall that, for a
nonzero nilpotent ideal J of R, nJ is the index of nilpotency of J .

Lemma 2.1. Let R be a ring and J ∈ I(R)?. Then the following statements
hold.
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(1) If J is a nilpotent ideal, then AnnR(J) ⊂ AnnR(Jn), n ≥ 2.
(2) If J is not a nilpotent ideal, then

AnnR(J2) = AnnR(J)⇐⇒ AnnR(Jn) = AnnR(J), n ≥ 2.

Proof. (1) Let J be a nilpotent ideal of A(R). If nJ = 2, then for every integer
n ≥ 2,

AnnR(J) ⊂ R = AnnR((0)) = AnnR(Jn),

as required. Now, let nJ ≥ 3 and also suppose that there is n ≥ 2 such
that AnnR(Jn) = AnnR(J). We claim that 2 ≤ n ≤ nJ − 1 (for n ≥ nJ ,
AnnR(Jn) = AnnR((0)) = R, a contradiction). Thus

JnJ−n ⊆ AnnR(Jn) = AnnR(J).

This implies that JnJ−n+1 = (0), which is absurd, since 2 ≤ nJ−n+1 ≤ nJ−1.
(2) Let J be a nonnilpotent ideal such that AnnR(J2) = AnnR(J). By

induction, we have AnnR(Jn−1) = AnnR(J). Now, if y ∈ AnnR(Jn), then

yJ ⊆ AnnR(Jn−1) = AnnR(J),

and so, yJ2 = (0). Also, by hypothesis y ∈ AnnR(J). Thus, the assertion
holds. The converse is straightforward. �

Theorems 2.2 and 2.4 are inspired from [5, Theorem 2.1].

Theorem 2.2. Let R be a ring such that satisfies the following conditions:
(i) For every J ∈ NI(R), nJ = 2, and
(ii) For every J ∈ A(R)? \NI(R), AnnR(J2) = AnnR(J).
Then AG(R) = AG(R).

Proof. Let K and J be adjacent vertices in AG(R). Then there exist n,m ∈ N
such that Kn, Jm 6= (0) and KnJm = (0). We consider three cases:

Case (1): If K,J ∈ NI(R), then nK = nJ = 2. This means K and J are
adjacent vertices in AG(R).

Case (2): If K /∈ NI(R) and J ∈ NI(R), then there is n ∈ N such that
KnJ = (0). By the assumption and Lemma 2.1, J ⊆ AnnR(K). Therefore, K
and J are adjacent vertices in AG(R).

Case (3): If K, J /∈ NI(R), then

Kn ⊆ AnnR(Jm) ⊆ AnnR(J).

Thus, KnJ = (0). Also, J ⊆ AnnR(Kn) ⊆ AnnR(K). Therefore, K and J are
adjacent in AG(R), as required. �

The following corollary is an immediate consequence of Theorem 2.2.

Corollary 2.3. Let R be a reduced ring. Then AG(R) = AG(R).

Proof. Suppose that AG(R) 6= AG(R). Then by Theorem 2.2, there exists I ∈
A(R)? such that AnnR(I) 6= AnnR(I2). Thus, there is z ∈ AnnR(I2) such that
zI2 = (0) and zI 6= (0). This yields zI ∈ NI(R), which is a contradiction. �
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It must be noted that for R = Zp3 , AG(R) = AG(R), but R is not a reduced
ring. Therefore, the converse of the above corollary is not true.

Theorem 2.4. Let R be a ring and AG(R) = AG(R). Then the following
statements hold.

(1) For every J ∈ NI(R), nJ ≤ 3.
(2) For every J ∈ A(R)? \NI(R), AnnR(J2) = AnnR(J).

Proof. (1) Suppose that there exists J ∈ NI(R) such that nJ ≥ 4. By Lemma
2.1,

AnnR(J) ⊂ AnnR(Jn), n ≥ 2.

Thus, there is y ∈ AnnR(Jn)\AnnR(J) such that RyJn = (0) and RyJ 6= (0).
If Ry 6= J , then Ry and J are adjacent in AG(R), but not in AG(R). Otherwise,
Ry2 and J are adjacent in AG(R) whereas they are not adjacent in AG(R),
both of which contradicted by AG(R) = AG(R).

(2) Suppose that J ∈ A(R)? \ NI(R). We have AnnR(J) ⊆ AnnR(J2), it
remains to show the other inclusion. Let y be an element of AnnR(J2). Then
J and Ry are adjacent in AG(R), which equal to AG(R). Hence, RyJ = (0)
and y ∈ AnnR(J), i.e., AnnR(J) = AnnR(J2). �

Theorem 2.5. Let R be a Noetherian ring and AG(R) = AG(R). Then the
following assertions hold:

(1) For every J ∈ NI(R), nJ ≤ 3.

(2) For every J ∈ A(R), I(
√
AnnR(J)) \NI(R) ⊆ I(AnnR(J)).

Proof. (1) It follows from part (1) of Theorem 2.4.

(2) Suppose that K ∈ I(
√
AnnR(J)) \NI(R). Since R is a Noetherian ring,

there is n ∈ N such that KnJ = (0). Thus, by hypothesis J and K are adjacent
in AG(R). This implies that K ∈ I(AnnR(J)). �

Theorem 2.6. Let R be a ring such that it satisfies the following conditions:
(i) For every J ∈ NI(R), nJ = 2, and

(ii) For every J ∈ A(R), I(
√
AnnR(J)) \NI(R) ⊆ I(AnnR(J)).

Then AG(R) = AG(R).

Proof. Let K and J be adjacent vertices in AG(R). Then there exist n,m ∈ N
such that KnJm = (0) with Kn, Jm 6= (0). Three cases occur:

Case (1): If K,J ∈ NI(R), then nK = nJ = 2, and so, n = m = 1. This
means K and J are adjacent in AG(R).

Case (2): If K /∈ NI(R) and J ∈ NI(R), then there is n ∈ N such that

KnJ = (0), and so, K ⊆
√
AnnR(J). Therefore, K ∈ I(

√
AnnR(J)) \NI(R).

This yields K and J are adjacent in AG(R).
Case (3): suppose that K, J /∈ NI(R). By hypothesis

K ⊆
√
AnnR(Jm)⇒ K ∈ I(AnnR(Jm)).

This implies that J ⊆
√
AnnR(K), and so, J ∈ I(

√
AnnR(K))\NI(R). Hence,

KJ = (0), as required. �
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Proposition 2.7. Let R be a ring and J ∈ A(R)? \ NI(R) such that the
following conditions hold:

(i) (0) ⊂ Nil(R) ⊂ Z(R),
(ii) AnnR(J2) = AnnR(J).

Then for every K ∈ NI(R), the following statements hold.

(1) AnnR(J) ⊆ AnnR(K).
(2) AnnR(J)NI(R) = (0).
(3) If nK 6= 2, then K 6⊆ AnnR(J) and AnnR(K) ⊆ Nil(R).

Moreover, if x ∈ AnnR(J), then x2 = 0.

Proof. (1) Suppose that

AnnR(J) 6⊆ AnnR(K).

Then, there exists x ∈ AnnR(J) \AnnR(K) such that x(K +J) 6= (0) whereas
x(J + K)nK = (0) (since KnK = (0)). Also, we know (K + J) /∈ NI(R).
Therefore,

AnnR(K + J) 6= AnnR(K + J)nK ,

this is a contradiction with Lemma 2.1.
(2) Suppose that K ∈ NI(R). By (1), AnnR(J) ⊆ AnnR(K), and so,

AnnR(J)K ⊆ AnnR(K)K = (0).

This implies that AnnR(J)NI(R) = (0).
(3) To the contrary, assume that K ⊆ AnnR(J). By (1), K2 = (0), a

contradiction. Thus, the first statement is proved.
To prove the second statement, suppose that there is y ∈ AnnR(K) such

that y /∈ Nil(R). By (1),

AnnR(Ry) ⊆ AnnR(K),

and so, K ⊆ AnnR(K), which is absurd. To prove the “moreover” statement,
it is enough to replace Rx with K. �

Proposition 2.8. Let (Ri)1≤i≤n be a finite family of rings with n ∈ N \ {1}.
Then AG(

∏n
i=1Ri) = AG(

∏n
i=1Ri) if and only if Ri is a reduced ring for every

1 ≤ i ≤ n.

Proof. It suffices to prove the case where n = 2. Suppose that R1 is not a
reduced ring. Then there exists 0 6= x1 ∈ R such that x21 = 0. We have

(R1, (0))(R1x1, R2) = (R1x1, (0)) 6= ((0), (0))

but

(R1, (0))(R1x1, R2)2 = ((0), (0)).

Then, AG(R1 × R2) 6= AG(R1 × R2), a contradiction. Also, we know that a
direct product of reduced rings is a reduced ring. Thus, the converse follows
from Corollary 2.3. �
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Example 2.9. Let n =
∏k
i=1 p

αi
i be the prime factorization of an integer n with

k ∈ N. Let m := max{αi : 1 ≤ i ≤ k}. Then AG(Zn) 6= AG(Zn) if and only if
k = 1 and m ≥ 4 or k ≥ 2 and m ≥ 2. We can conclude AG(Zn) = AG(Zn) if
and only if n ∈ {p, p2, p3} or m = 1.

3. Diameter of AG(R)

In this section, we study the diameter of the extended annihilating-ideal
graph of a ring R.

Theorem 3.1. Let R be a ring. Then AG(R) is connected and diam(AG(R)) ≤
3.

Proof. Note that AG(R) is a subgraph of AG(R). Hence the result follows from
[3, Theorem 2.1]. �

The following theorem is the first main results of this section, it shows when
AG(R) has a vertex adjacent to every other vertex. This is similar to [2,
Theorem 2.5].

Theorem 3.2. Let I be a vertex of AG(R). Then I is adjacent to every other
vertex if and only if only one of the following statements hold:

(1) R ∼= K ×D, where K is a field and D is an integral domain.
(2) A(R)? = {J ∈ I(R) : ∃m ∈ N, Jm 6= (0), JmInI−1 = (0)}.
(3) A(R)? = {J ∈ I(R) : ∃m ∈ N, Jm 6= (0), Jma = (0)}, where 0 6= a ∈ I

and Ra ⊂ I.

Proof. Suppose that I is adjacent to every other vertex of AG(R). If I is a
nilpotent ideal, then for each ideal J ∈ A(R)?, there are n,m ∈ N such that
InJm = (0) with In, Jm 6= (0). Thus, n < nI and InI−1Jm = (0), i.e.,

A(R)? = {J ∈ I(R) : ∃m ∈ N, Jm 6= (0), JmInI−1 = (0)}.
Now, assume that I /∈ NI(R). Then I2 = I. If not, then there are n,m ∈ N
such that (I2)nIm = I2n+m = (0), a contradiction. Now, let I be a minimal
ideal, by Brauer’s Lemma, there is an idempotent element e of R such that
R1 = I = Re and R = R1 ⊕R2. Clearly, (R1, (0)) is adjacent to other vertices
of AG(R). Hence, for each 0 6= c ∈ R1, (R1c, (0)) is an annihilating ideal of R.
If R1c 6= R1, then there exists m ∈ N such that

(R1, (0))(R1c, (0))m = ((0), (0)),

i.e., R1c
m = (0), a contradiction. Therefore, R1 is a field. We claim that R2

is an integral domain. Suppose that otherwise. Then there is b ∈ Z(R2)? such
that (R1, R2b) ∈ A(R)? is not adjacent to (R1, (0)), a contradiction. Thus, R2

must be an integral domain. Now, if I is not a minimal ideal, then there is
0 6= a ∈ I such that Ra ⊂ I and it is also adjacent to every other vertex of
A(R)?. Therefore,

A(R)? = {J ∈ I(R) : ∃m ∈ N, Jm 6= (0), Jma = (0)}.
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The converse is straightforward. �

Corollary 3.3. Let R be a ring. If I is a nilpotent ideal and adjacent to every
other vertex of AG(R), then Z(R) is an ideal.

Proof. According to the proven process Theorem 3.2,

A(R)? = {J ∈ I(R) : ∃m ∈ N, Jm 6= (0), JmInI−1 = (0)}.
Now, if x ∈ Z(R)?, then Rx ∈ A(R)? and there exists m ∈ N such that

(Rx)mInI−1 = (0). This implies that x ∈
√
AnnR(InI−1), and so, Z(R) =√

AnnR(InI−1) is an ideal. �

Corollary 3.4. Let R be an Artinian ring and I be a nilpotent ideal which is
adjacent to every other vertex of AG(R). Then R is a local ring.

Proof. By assumption, R is a finite direct sum of commutative local rings. We
claim that R is a local ring. Suppose that R = R1 ⊕ R2, where Ri, i = 1, 2,
are local rings. Then I = I1 ⊕ I2 such that Ii, i = 1, 2, are nilpotent ideals of
Ri. Without loss of generality, let nI1 ≥ nI2 . By using part (2) of Theorem
3.2, InI−1(R1, (0))m = (I

nI1−1

1 , (0)). That is a contradiction. Therefore, R is a
local ring. �

Theorem 3.5. Let R be a Noetherian ring. Then AG(R) is a complete graph if
and only if either R ∼= K1⊕K2, where K1 and K2 are fields or A(R)? = NI(R)
and InI−1JnJ−1 = (0), where I, J ∈ A(R)?.

Proof. The “if” statement holds trivially. Conversely, suppose that AG(R)
is complete and I ∈ A(R)? \ NI(R). By proof of Theorem 3.2, I = I2 and
R ∼= K×D. Now, for 0 6= x ∈ D, ((0), Rx) and ((0), D) are adjacent. Therefore,
D is a field. �

Theorem 3.6. Let R be a reduced ring. Then AG(R) is a complete graph if
and only if R ∼= K1 ×K2, where K1 and K2 are fields.

Proof. It follows from Corollary 2.3 and [4, Theorem 2.7]. �

We set

A(R)? = {InI−1 : I ∈ NI(R)} and

A(R)?
2

= {InI−1JnJ−1 : I, J ∈ NI(R)}.

Corollary 3.7. Let R be a Noetherian ring and AG(R) 6= AG(R). Then

AG(R) is complete if and only if A(R)? = NI(R) and A(R)?
2

= {(0)}.

Proof. Suppose that AG(R) is complete, by assumption and Theorem 3.5, the
assertion holds. The converse is clear. �

Theorem 3.8. Let R be a ring with A(R)? = NI(R) 6= ∅. Then the following
statements hold.
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(1) If |A(R)?| = 1, then diam(AG(R)) = 0.
(2) If |A(R)?| ≥ 2, then

diam(AG(R)) =

{
2 A(R)?

2 6= {(0)},
1 otherwise.

Proof. (1) If |A(R)?| = 1, then by [1, Theorem 3.4] either R ∼= K[x]
(x2) , where

K is a field or R ∼= L, where L is a coefficient ring of characteristic p2 and
diam(AG(R)) = 0.

(2) Suppose that A(R)?
2

= {(0)}. Clearly, AG(R) is a complete graph, and

so, diam(AG(R)) = 1. Now, let A(R)?
2 6= {(0)}. Then there are distinct

vertices I, J ∈ A(R)? such that InI−1JnJ−1 6= (0). If I = IJ , then IJnJ−1 =
IJnJ = (0), a contradiction. Similarly, IJ 6= J . Therefore, I− IJ−J is a path
with length 2 between I and J in AG(R). Hence diam(AG(R)) = 2. �

The following proposition compares the diameter of the graph AG(
∏n
i=1Ri)

with the diameter of AG(
∏n
i=1Ri).

Proposition 3.9. Let R =
∏n
i=1Ri, where (Ri)1≤i≤n is a finite family of

rings with n ∈ N \ {1}. If n ≥ 3, then diam(AG(R)) = diam(AG(R)) = 3.
Otherwise, the following statements hold.

(1) AG(R) is complete if and only if Ri, i = 1, 2, are fields.
(2) If Ri, i = 1, 2, are integral domains and |I(R1)| ≥ 3 or |I(R2)| ≥ 3,

then AG(R) = AG(R) and diam(AG(R)) = 2. In this case AG(R) is
a complete bipartite graph.

(3) If A(Ri)
? \NI(Ri) 6= ∅ for at least one of Ri, i = 1, 2, then

diam(AG(R)) = diam(AG(R)) = 3.

(4) If A(Ri)
? = NI(Ri) for at least one of Ri, i = 1, 2, then

diam(AG(R)) = 3 and diam(AG(R)) = 2.

Proof. For n ≥ 3,

((0), R2, . . . , Rn)− (R1, (0), . . . , (0))− ((0), . . . , (0), Rn)− (R1, . . . , Rn−1, (0))

is the shortest path between ((0), R2, . . . , Rn) and (R1, . . . , Rn−1, (0)). Hence,

diam(AG(R)) = diam(AG(R)) = 3,

as required. Now, let n = 2.
(1) Suppose that AG(R) is complete. Since (0, 1) ∈ Z(R) and (0, 1)2 6= (0, 0),

Z(R)2 6= {0}. Also, we know (0, 1), (1, 0) ∈ Z(R) and (1, 1) /∈ Z(R), thus, Z(R)
is not an ideal and by [4, Theorem 2.7], R ∼= K1 ⊕K2, where K1 and K2 are
fields.

(2) It is trivial.
(3) Suppose that R1 contains a nonnilpotent annihilating ideal I. Then

there is an ideal J ∈ I(R1) such that IJ = (0). Therefore,

(R1, (0))− ((0), R2)− (J, (0))− (I,R2)
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is a path in both AG(R) and AG(R) and there is no vertex adjacent to both
(R1, (0)) and (I,R2). Hence, diam(AG(R)) = diam(AG(R)) = 3.

(4) Suppose that A(R1) = NI(R1) and R2 is an integral domain. For I ∈
A(R1)?,

(R1, (0))− ((0), R2)− (InI−1, (0))− (I,R2)

is only path between (R1, (0)) and (I,R2) in AG(R). Thus, diam(AG(R)) = 3.
Now, we set A(R)? = T1 ∪ T2, where

T1 = {(I, (0)) : I ∈ I(R1)?} and

T2 = {(L, J) : L ∈ A(R1), J ∈ I(R2)?}.

Obviously, the distance between two elements in A(R)? shows that

diam(AG(R)) = 2. �

Example 3.10. Let p and q be distinct primes. Then the following assertions
hold.

(1) diam(AG(Zn)) = 0, if n = p2.
(2) diam(AG(Zn)) = 1, if n = pm, m ≥ 3. In this case AG(Zn) is a

complete graph.
(3) diam(AG(Zn)) = 2, if n = pαqβ , α, β ∈ N, α ≥ 2 or β ≥ 2. Otherwise,

diam(AG(Zn)) = diam(AG(Zn)) = 1. (Graph AG(Zp2q) is a complete
bipartite graph.)

(4) diam(AG(Zn)) = 3, if
∏k
i=1 p

αi
i is the prime factorization of n, k ≥ 3.

Proof. The statements (1) and (2) are clear.
(3) By part (4) of Proposition 3.9, diam(AG(Zn)) = 2. Now, if α = β = 1,

then the vertex set of AG(Zpq) is {Zpqp,Zpqq}. This implies that AG(Zpq) is

a complete graph and diam(AG(Zn)) = 1.
(4) Follows from Proposition 3.9. �

4. Cycles in AG(R)

In this section, we study the girth of the extended of AG(R).

Theorem 4.1. Let R be a ring. Then gr(AG(R)) ∈ {3, 4,∞}.

Proof. The assertion follows by applying [1, Theorems 3.3 and 3.4] and [4,
Theorem 2.1]. �

Theorem 4.2. Let R be a ring. If AG(R) 6= AG(R), then AG(R) contains a
cycle.

Proof. Suppose that AG(R) 6= AG(R). By Theorem 2.2, there exists I ∈ NI(R)
with nI ≥ 3 or I ∈ A(R)? \NI(R) with Ann(I) 6= Ann(I2). For the first case,
we have I 6= InI−1. By using connectedness of AG(R), there is J ∈ A(R)? such
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that J /∈ {I, InI−1} and JInI−1 = (0). Then I − J − InI−1 − I is a cycle of
length 3 in AG(R). For the second case, there exists a ∈ Z(R)? such that

Ra ⊆ AnnR(I2) and Ra 6⊆ AnnR(I).

If Ra2 = (0), then Ra− I − Ia−Ra is a cycle of length 3. If not,

I − Ia− I2 −Ra− I
is a cycle of length 4. Consequently, AG(R) contains a cycle. �

The following corollaries are immediate results from Theorem 4.2.

Corollary 4.3. Let AG(R) 6= AG(R) and I ∈ NI(R) with nI ≥ 3. Then
gr(AG(R)) = 3.

Corollary 4.4. Let I ∈ A(R)? \NI(R) and J ∈ I(R). If I2J = (0), IJ 6= (0)
and J2 = (0), then gr(AG(R)) = 3.

Theorem 4.5. Let R be a ring and A(R)? = NI(R). Then

gr(AG(R)) =

{
∞ |A(R)?| ≤ 2,
3 |A(R)?| ≥ 3.

Proof. If |A(R)?| = 1, then either R ∼= K[x]
(x2) , where K is a field or R ∼= L, where

L is a coefficient ring of characteristic p2 and gr(AG(R)) =∞.
If |A(R)?| = 2, then by [4, Corollary 2.9], R is an Artinian local ring with

exactly two nonzero proper ideals Z(R) and Z(R)2. Hence, gr(AG(R)) =∞.
Now, suppose that |A(R)?| = 3. Then by [4, Corollary 2.9], R is an Artinian

local ring with exactly three nonzero proper ideals Z(R), Z(R)2 and Z(R)3.
Therefore, AG(R) is a complete graph and gr(AG(R)) = 3.

Also, if |A(R)?| ≥ 4, then we consider two cases:
Case (1): Suppose that there is I ∈ A(R)? with nI ≥ 3. Since AG(R) is

connected, there is at least an ideal J /∈ {I, I2} such that J is adjacent to both
I and I2 in AG(R).

Case (2): Suppose that for each I ∈ A(R)?, nI = 2. Since AG(R) is con-
nected, for every three distinct vertices I, J,K ∈ A(R)?, there exists a path
J − I − K. Now, if K ⊆ J or J ⊆ K, then KJ = (0). Otherwise, since
(J + K)I = (0) we conclude (J + K) ∈ A(R)?. Thus (J + K)2 = (0) and
JK = (0). In the two cases gr(AG(R)) = 3. �

Theorem 4.6. Let R be a ring with NI(R) 6= {(0)} and gr(AG(R)) = 4. Then
AG(R) 6= AG(R), gr(AG(R)) = 4 and AG(R) is a complete bipartite graph.

Proof. By [1, Theorem 3.5], R ∼= R1 × R2, either R1
∼= K[x]

(x2) , where K is a

field or R1
∼= L, where L is a coefficient ring of characteristic p2 and R2 is an

integral domain, but it is not a field. Then A(R)? = C ∪D, where

C = {((x) + (x2), J), ((0), J) : J ∈ I(R2)?} and

D = {(R1, (0)), ((x) + (x2), (0))}.
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Obviously, all elements of C are adjacent to all elements of D in AG(R).
Therefore, AG(R) is a complete bipartite graph and gr(AG(R)) = 4. Also,
((x) + (x2), R2)− (R1, (0)) is an edge in AG(R) whereas, ((x) + (x2), R2) and
(R1, (0)) are not adjacent in AG(R). Thus, AG(R) 6= AG(R). �

Theorem 4.7. Let R be a ring with NI(R) 6= {(0)} and gr(AG(R)) = ∞.
Then gr(AG(R)) ∈ {3, 4,∞}.

Proof. If AG(R) = AG(R), then gr(AG(R)) =∞. Otherwise, by Theorem 2.2,
if there exists J ∈ NI(R) with nJ ≥ 3, then J2 6= (0) and JJnJ−1 = (0), by
proceeding the proof of [1, Theorem 3.4], we have JnJ−1 = annR(Z(R)). Note
that |A(R)?| ≥ 3 implies that there is K ∈ A(R)? such that

J −K − JnJ−1 − J
is a cycle in AG(R). This shows that gr(AG(R)) = 3.

If not, there exists J ∈ A(R)? \ NI(R), with Ann(J) 6= Ann(J2). By [1,

Theorem 3.4], we set R ∼= R1×R2 such that R1 is a field and either R2
∼= K[x]

(x2) ,

K is a field or R2
∼= L, where L is a coefficient ring of characteristic p2 and

J = (R1, (x
2) + (x)). In this case AG(R) = P4 and AG(R) with the vertex set

{(R1, (x
2)), (R1, (x

2) + (x)), ((0), R2), ((0), (x2) + (x))}

is a complete bipartite graph. Thus, gr(AG(R)) = 4. �

Proposition 4.8. Let R =
∏n
i=1Ri, where (Ri)1≤i≤n is a finite family of rings

with n ∈ N \ {1}.
(1) If n = 2, we have the following assertions:

(a) gr(AG(R)) = gr(AG(R)) = ∞ if and only if R1 and R2 are integral
domains and at least one of them is isomorphic to a field.

(b) If R1 and R2 are integral domains with |I(R1)| ≥ 3 and |I(R2)| ≥ 3,
then AG(R) = AG(R) and gr(AG(R)) = 4.

(c) If R1 and R2 are not integral domains, then gr(AG(R)) = gr(AG(R))
= 3.

(d) If R2 is an integral domain and |A(R1)?| ≥ 2, then gr(AG(R)) =
gr(AG(R)) = 3.

(e) If R2 is an integral domain such that is not a field and |A(R1)?| = 1,
then gr(AG(R)) = gr(AG(R)) = 4.

(f) If R1 is a field and |A(R2)?| = 1, then gr(AG(R)) = 4 and gr(AG(R))
=∞.

(2) If n ≥ 3, then gr(AG(R)) = gr(AG(R)) = 3.

Proof. (1) If n = 2, then the proof of parts (a) and (b) is trivial.
(c) Suppose that |A(Ri)

?| = 1 and Ii ∈ A(Ri)
?. Then I21 = I22 = (0) and

((0), I2)−(I1, (0))−(I1, I2)−((0), I2) is a cycle. Now, if |A(Ri)
?| = 2 and Ii, Ji ∈

A(Ri)
?, such that IiJi = (0). Then ((0), I2) − (I1, (0)) − (J1, J2) − ((0), I2) is

a cycle. Therefore, in both cases gr(AG(R)) = 3.
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(d) Let I, J ∈ A(R1)? with IJ = (0). Then ((0), R2) − (I, (0)) − (J, (0)) −
((0), R2) is a cycle, as required.

(e) Assume that I ∈ A(R1)?. Then I2 = (0) and (I, (0)) − ((0), J) −
(R1, (0))− ((0), R2)− (I, (0)) is a cycle in AG(R). Using Theorem 4.6,

gr(AG(R)) = 4.

(f) It is explicit.
(2) The cycle (R1, (0), . . . , (0))− ((0), R2, (0), . . . , (0))− ((0), (0), R3, (0), . . .,

(0))− (R1, (0), . . . , (0)) shows that gr(AG(R)) = gr(AG(R)) = 3. �

Example 4.9. Let n have the prime decomposition n =
∏k
i=1 p

αi
i . Now, if n

be a non-prime natural number, then

gr(AG(Zn)) =

 ∞ n ∈ {p2, p3, pq},
4 n = p2q,
3 otherwise.

By Proposition 4.8, we deduce that if n 6= p2q and |A(Zn)?| ≥ 3, then

gr(AG(Zn)) = 3

and for every n ∈ N such that |A(Zn)?| ≤ 2, gr(AG(Zn)) =∞. Also, if n = p2q,
by part (f) of Proposition 4.8, gr(AG(Zn)) = 4.
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