AN EXTENSION OF ANNIHILATING-IDEAL GRAPH OF COMMUTATIVE RINGS

Mahtab Koohi Kerahroodi and Fatemeh Nabaei

Abstract

Let R be a commutative ring with unity. The extension of annihilating-ideal graph of $R, \overline{\mathbb{A} G}(R)$, is the graph whose vertices are nonzero annihilating ideals of R and two distinct vertices I and J are adjacent if and only if there exist $n, m \in \mathbb{N}$ such that $I^{n} J^{m}=(0)$ with $I^{n}, J^{m} \neq(0)$. First, we differentiate when $\mathbb{A} \mathbb{G}(R)$ and $\overline{\mathbb{A} \mathbb{G}}(R)$ coincide. Then, we have characterized the diameter and the girth of $\overline{\mathbb{A} G}(R)$ when R is a finite direct products of rings. Moreover, we show that $\overline{\mathbb{A} G}(R)$ contains a cycle, if $\overline{\mathbb{A} G}(R) \neq \mathbb{A} \mathbb{G}(R)$.

1. Introduction

Throughout this paper all rings are commutative with $1 \neq 0$. The set of zero-divisors, the annihilator of an element x, the nilradical and the set of all ideals of a ring R are denoted by $Z(R), \operatorname{Ann}(x), N i l(R)$ and $\mathbb{I}(R)$, respectively. For a nonzero nilpotent element x of R, n_{x} denotes the index of nilpotency of x. A graph G is connected if there is a path between every two distinct vertices. For every positive integer n, we denote a path of length n, by P_{n}. Also, $d(x, y)$ is the length of the shortest path between x and y for two distinct vertices $x, y \in V(G)$. The girth of G, denoted by $\operatorname{gr}(G)$, is defined as the length of the shortest cycle in G and $\operatorname{gr}(G)=\infty$, if G contains no cycles. A complete r partite graph is a graph whose vertex set is partitioned into r separated subsets such that each vertex is joined to every other vertex that is not in the same subset. For positive integers m and n, the complete graph with n vertices is denoted by K^{n} and the complete bipartite graph with parts of sizes m and n will be denoted by $K^{m, n}$.

Recall from [3], an ideal I of R is said to be an annihilating ideal if there exists a nonzero ideal J such that $I J=(0)$. As in [3], we denote sets of all annihilating ideals and nonzero annihilating ideals of R by $\mathbb{A}(R)$ and $\mathbb{A}(R)^{\star}$ respectively. M. Behboodi and Z. Rakeei [3] introduced the concept of the

[^0]annihilating-ideal graph of R, denoted by $\mathbb{A} \mathbb{G}(R)$. This graph is an undirected simple graph whose vertex set is $\mathbb{A}(R)^{\star}$ and distinct vertices I and J are adjacent in $\mathbb{A} \mathbb{G}(R)$ if and only if $I J=(0)$. Also, D. Bennis, J. Mikram and F . Taraza [5] introduced the concept of the extended zero divisor graph of R, denoted by $\bar{\Gamma}(R)$, such that its vertex set consists of all its nonzero zero divisors and that two distinct vertices x and y are adjacent if and only if there exist $m, n \in \mathbb{N}$ such that $x^{n} y^{m}=0$ with $x^{n} \neq 0$ and $y^{m} \neq 0$.

In this paper, we follow the same approach of [5] and we introduce the extension of the annihilating-ideal graph of $R, \mathbb{A} \mathbb{G}(R)$, which we call, following the terminology of [5], the extended of the annihilating-ideal graph of $R, \overline{\mathbb{A} G}(R)$. This is a graph whose vertex set is $\mathbb{A}(R)^{\star}$ and two distinct vertices I and J are adjacent if and only if there exist $n, m \in \mathbb{N}$ such that $I^{n} J^{m}=(0)$ with $I^{n}, J^{m} \neq(0)$. It is obvious that $\mathbb{A} \mathbb{G}(R)$ is a subgraph of $\overline{\mathbb{A} G}(R)$. Also, note that $\overline{\mathbb{A} G}(R)$ is the empty graph if and only if R is an integral domain.

In Section 2, we discuss about the question of when $\overline{\mathbb{A} G}(R)$ and $\mathbb{A} \mathbb{G}(R)$ coincide. Among other results, we investigate some conditions on rings such that the annihilating-ideal graph of finite direct product of rings and extended graph of them are the same. Section 3 is devoted to study the diameter of the extended graph. In Theorem 3.2, we study when a vertex in $\overline{\mathbb{A} G}(R)$ is adjacent to every other vertex. Using this theorem we determine when $Z(R)$ is an ideal. Finally, in Section 4, we study the girth of $\overline{\mathbb{A} G}(R)$. It is shown in Theorem 4.2, when $\overline{\mathbb{A} G}(R)$ contains a cycle. Moreover, in Theorem 4.5, by considering a ring with some properties is proven that $\operatorname{gr}(\overline{\mathbb{A} \mathbb{G}}(R)) \neq 4$. Among other results, in Theorem 4.6, under some conditions is shown that $\overline{\mathbb{A} \mathbb{G}}(R)$ is a complete bipartite graph.

2. When do $\overline{\mathbb{A} G}(R)$ and $\mathbb{A} \mathbb{G}(R)$ coincide?

Let R be a commutative ring with unity and $\mathbb{I}(R)$ be the set of ideals of R. We set

$$
\begin{gathered}
N_{\mathbb{I}}(R)=\left\{J \in \mathbb{I}(R): \exists n \in \mathbb{N} \backslash\{1\}, J^{n}=(0)\right\}, \\
\mathbb{A}(R)=\left\{J \in \mathbb{I}(R): \exists K \in \mathbb{I}(R)^{\star}, J K=(0)\right\} \text { and } \\
\mathbb{A}(R)^{\star}=\mathbb{A}(R) \backslash\{(0)\} .
\end{gathered}
$$

Definition. Extension of annihilating-ideal graph $\mathbb{A} \mathbb{G}(R)$, denoted by $\overline{\mathbb{A} \mathbb{G}}(R)$, is the simple graph whose vertex set is $\mathbb{A}(R)^{\star}$ and two distinct vertices I and J are adjacent if and only if there exist $n, m \in \mathbb{N}$ such that $I^{n} J^{m}=(0)$ with $I^{n}, J^{m} \neq(0)$.

We are interested in the study of a ring R with nonzero ideals, whose $\overline{\mathbb{A} \mathbb{G}}(R)$ and $\mathbb{A} \mathbb{G}(R)$ coincide. The following lemma extends [5, Lemma 2.2] and has a key role in the proof of the main results of this section. Recall that, for a nonzero nilpotent ideal J of R, n_{J} is the index of nilpotency of J.
Lemma 2.1. Let R be a ring and $J \in \mathbb{I}(R)^{\star}$. Then the following statements hold.
(1) If J is a nilpotent ideal, then $A n n_{R}(J) \subset A n n_{R}\left(J^{n}\right), n \geq 2$.
(2) If J is not a nilpotent ideal, then

$$
A n n_{R}\left(J^{2}\right)=A n n_{R}(J) \Longleftrightarrow \operatorname{Ann}_{R}\left(J^{n}\right)=A n n_{R}(J), n \geq 2
$$

Proof. (1) Let J be a nilpotent ideal of $\mathbb{A}(R)$. If $n_{J}=2$, then for every integer $n \geq 2$,

$$
A n n_{R}(J) \subset R=A n n_{R}((0))=A n n_{R}\left(J^{n}\right)
$$

as required. Now, let $n_{J} \geq 3$ and also suppose that there is $n \geq 2$ such that $A n n_{R}\left(J^{n}\right)=A n n_{R}(J)$. We claim that $2 \leq n \leq n_{J}-1$ (for $n \geq n_{J}$, $A n n_{R}\left(J^{n}\right)=A n n_{R}((0))=R$, a contradiction). Thus

$$
J^{n_{J}-n} \subseteq A n n_{R}\left(J^{n}\right)=A n n_{R}(J) .
$$

This implies that $J^{n_{J}-n+1}=(0)$, which is absurd, since $2 \leq n_{J}-n+1 \leq n_{J}-1$.
(2) Let J be a nonnilpotent ideal such that $A n n_{R}\left(J^{2}\right)=A n n_{R}(J)$. By induction, we have $A n n_{R}\left(J^{n-1}\right)=A n n_{R}(J)$. Now, if $y \in A n n_{R}\left(J^{n}\right)$, then

$$
y J \subseteq A n n_{R}\left(J^{n-1}\right)=A n n_{R}(J)
$$

and so, $y J^{2}=(0)$. Also, by hypothesis $y \in A n n_{R}(J)$. Thus, the assertion holds. The converse is straightforward.

Theorems 2.2 and 2.4 are inspired from [5, Theorem 2.1].
Theorem 2.2. Let R be a ring such that satisfies the following conditions:
(i) For every $J \in N_{\mathbb{I}}(R), n_{J}=2$, and
(ii) For every $J \in \mathbb{A}(R)^{\star} \backslash N_{\mathbb{I}}(R), A n n_{R}\left(J^{2}\right)=A n n_{R}(J)$.

Then $\overline{\mathbb{A} \mathbb{G}}(R)=\mathbb{A} \mathbb{G}(R)$.
Proof. Let K and J be adjacent vertices in $\overline{\mathbb{A} \mathbb{G}}(R)$. Then there exist $n, m \in \mathbb{N}$ such that $K^{n}, J^{m} \neq(0)$ and $K^{n} J^{m}=(0)$. We consider three cases:

Case (1): If $K, J \in N_{\mathbb{I}}(R)$, then $n_{K}=n_{J}=2$. This means K and J are adjacent vertices in $\mathbb{A} \mathbb{G}(R)$.

Case (2): If $K \notin N_{\mathbb{I}}(R)$ and $J \in N_{\mathbb{I}}(R)$, then there is $n \in \mathbb{N}$ such that $K^{n} J=(0)$. By the assumption and Lemma 2.1, $J \subseteq A n n_{R}(K)$. Therefore, K and J are adjacent vertices in $\mathbb{A} \mathbb{G}(R)$.

Case (3): If $K, J \notin N_{\mathbb{I}}(R)$, then

$$
K^{n} \subseteq A n n_{R}\left(J^{m}\right) \subseteq A n n_{R}(J)
$$

Thus, $K^{n} J=(0)$. Also, $J \subseteq A n n_{R}\left(K^{n}\right) \subseteq A n n_{R}(K)$. Therefore, K and J are adjacent in $\mathbb{A} \mathbb{G}(R)$, as required.

The following corollary is an immediate consequence of Theorem 2.2.
Corollary 2.3. Let R be a reduced ring. Then $\overline{\mathbb{A} G}(R)=\mathbb{A} \mathbb{G}(R)$.
Proof. Suppose that $\overline{\mathbb{A} G}(R) \neq \mathbb{A} \mathbb{G}(R)$. Then by Theorem 2.2, there exists $I \in$ $\mathbb{A}(R)^{\star}$ such that $A n n_{R}(I) \neq A n n_{R}\left(I^{2}\right)$. Thus, there is $z \in A n n_{R}\left(I^{2}\right)$ such that $z I^{2}=(0)$ and $z I \neq(0)$. This yields $z I \in N_{\mathbb{I}}(R)$, which is a contradiction.

It must be noted that for $R=\mathbb{Z}_{p^{3}}, \overline{\mathbb{A} \mathbb{G}}(R)=\mathbb{A} \mathbb{G}(R)$, but R is not a reduced ring. Therefore, the converse of the above corollary is not true.
Theorem 2.4. Let R be a ring and $\overline{\mathbb{A} G}(R)=\mathbb{A} \mathbb{G}(R)$. Then the following statements hold.
(1) For every $J \in N_{\mathbb{I}}(R), n_{J} \leq 3$.
(2) For every $J \in \mathbb{A}(R)^{\star} \backslash N_{\mathbb{I}}(R), A n n_{R}\left(J^{2}\right)=A n n_{R}(J)$.

Proof. (1) Suppose that there exists $J \in N_{\mathbb{I}}(R)$ such that $n_{J} \geq 4$. By Lemma 2.1,

$$
A n n_{R}(J) \subset A n n_{R}\left(J^{n}\right), n \geq 2
$$

Thus, there is $y \in A n n_{R}\left(J^{n}\right) \backslash A n n_{R}(J)$ such that $R y J^{n}=(0)$ and $R y J \neq(0)$. If $R y \neq J$, then $R y$ and J are adjacent in $\overline{\mathbb{A} \mathbb{G}}(R)$, but not in $\mathbb{A} \mathbb{G}(R)$. Otherwise, $R y^{2}$ and J are adjacent in $\overline{\mathbb{A} G}(R)$ whereas they are not adjacent in $\mathbb{A} \mathbb{G}(R)$, both of which contradicted by $\overline{\mathbb{A} G}(R)=\mathbb{A} \mathbb{G}(R)$.
(2) Suppose that $J \in \mathbb{A}(R)^{\star} \backslash N_{\mathbb{I}}(R)$. We have $A n n_{R}(J) \subseteq \operatorname{Ann}_{R}\left(J^{2}\right)$, it remains to show the other inclusion. Let y be an element of $A n n_{R}\left(J^{2}\right)$. Then J and $R y$ are adjacent in $\overline{\mathbb{A} G}(R)$, which equal to $\mathbb{A} \mathbb{G}(R)$. Hence, RyJ $=(0)$ and $y \in A n n_{R}(J)$, i.e., $A n n_{R}(J)=A n n_{R}\left(J^{2}\right)$.
Theorem 2.5. Let R be a Noetherian ring and $\overline{\mathbb{A} G}(R)=\mathbb{A} \mathbb{G}(R)$. Then the following assertions hold:
(1) For every $J \in N_{\mathbb{I}}(R), n_{J} \leq 3$.
(2) For every $J \in \mathbb{A}(R), \mathbb{I}\left(\sqrt{A n n_{R}(J)}\right) \backslash N_{\mathbb{I}}(R) \subseteq \mathbb{I}\left(A n n_{R}(J)\right)$.

Proof. (1) It follows from part (1) of Theorem 2.4.
(2) Suppose that $K \in \mathbb{I}\left(\sqrt{A n n_{R}(J)}\right) \backslash N_{\mathbb{I}}(R)$. Since R is a Noetherian ring, there is $n \in \mathbb{N}$ such that $K^{n} J=(0)$. Thus, by hypothesis J and K are adjacent in $\mathbb{A} \mathbb{G}(R)$. This implies that $K \in \mathbb{I}\left(A n n_{R}(J)\right)$.

Theorem 2.6. Let R be a ring such that it satisfies the following conditions:
(i) For every $J \in N_{\mathbb{I}}(R), n_{J}=2$, and
(ii) For every $J \in \mathbb{A}(R), \mathbb{I}\left(\sqrt{A n n_{R}(J)}\right) \backslash N_{\mathbb{I}}(R) \subseteq \mathbb{I}\left(A n n_{R}(J)\right)$.

Then $\overline{\mathbb{A} \mathbb{G}}(R)=\mathbb{A} \mathbb{G}(R)$.
Proof. Let K and J be adjacent vertices in $\overline{\mathbb{A} \mathbb{G}}(R)$. Then there exist $n, m \in \mathbb{N}$ such that $K^{n} J^{m}=(0)$ with $K^{n}, J^{m} \neq(0)$. Three cases occur:

Case (1): If $K, J \in N_{\mathbb{I}}(R)$, then $n_{K}=n_{J}=2$, and so, $n=m=1$. This means K and J are adjacent in $\mathbb{A} \mathbb{G}(R)$.

Case (2): If $K \notin N_{\mathbb{I}}(R)$ and $J \in N_{\mathbb{I}}(R)$, then there is $n \in \mathbb{N}$ such that $K^{n} J=(0)$, and so, $K \subseteq \sqrt{A n n_{R}(J)}$. Therefore, $K \in \mathbb{I}\left(\sqrt{A n n_{R}(J)}\right) \backslash N_{\mathbb{I}}(R)$. This yields K and J are adjacent in $\mathbb{A} \mathbb{G}(R)$.

Case (3): suppose that $K, J \notin N_{\mathbb{I}}(R)$. By hypothesis

$$
K \subseteq \sqrt{A n n_{R}\left(J^{m}\right)} \Rightarrow K \in \mathbb{I}\left(A n n_{R}\left(J^{m}\right)\right)
$$

This implies that $J \subseteq \sqrt{A n n_{R}(K)}$, and so, $J \in \mathbb{I}\left(\sqrt{A n n_{R}(K)}\right) \backslash N_{\mathbb{I}}(R)$. Hence, $K J=(0)$, as required.

Proposition 2.7. Let R be a ring and $J \in \mathbb{A}(R)^{\star} \backslash N_{\mathbb{I}}(R)$ such that the following conditions hold:
(i) $(0) \subset N i l(R) \subset Z(R)$,
(ii) $A n n_{R}\left(J^{2}\right)=A n n_{R}(J)$.

Then for every $K \in N_{\mathbb{I}}(R)$, the following statements hold.
(1) $A n n_{R}(J) \subseteq A n n_{R}(K)$.
(2) $A n n_{R}(J) N_{\mathbb{I}}(R)=(0)$.
(3) If $n_{K} \neq 2$, then $K \nsubseteq A n n_{R}(J)$ and $A n n_{R}(K) \subseteq \operatorname{Nil}(R)$. Moreover, if $x \in A n n_{R}(J)$, then $x^{2}=0$.

Proof. (1) Suppose that

$$
A n n_{R}(J) \nsubseteq A n n_{R}(K) .
$$

Then, there exists $x \in A n n_{R}(J) \backslash A n n_{R}(K)$ such that $x(K+J) \neq(0)$ whereas $x(J+K)^{n_{K}}=(0)\left(\right.$ since $\left.K^{n_{K}}=(0)\right)$. Also, we know $(K+J) \notin N_{\mathbb{I}}(R)$. Therefore,

$$
A n n_{R}(K+J) \neq A n n_{R}(K+J)^{n_{K}},
$$

this is a contradiction with Lemma 2.1.
(2) Suppose that $K \in N_{\mathbb{I}}(R)$. By (1), $A n n_{R}(J) \subseteq A n n_{R}(K)$, and so,

$$
A n n_{R}(J) K \subseteq A n n_{R}(K) K=(0) .
$$

This implies that $A n n_{R}(J) N_{\mathbb{I}}(R)=(0)$.
(3) To the contrary, assume that $K \subseteq A n n_{R}(J)$. By (1), $K^{2}=(0)$, a contradiction. Thus, the first statement is proved.

To prove the second statement, suppose that there is $y \in A n n_{R}(K)$ such that $y \notin \operatorname{Nil}(R)$. By (1),

$$
A n n_{R}(R y) \subseteq A n n_{R}(K)
$$

and so, $K \subseteq A n n_{R}(K)$, which is absurd. To prove the "moreover" statement, it is enough to replace $R x$ with K.

Proposition 2.8. Let $\left(R_{i}\right)_{1 \leq i \leq n}$ be a finite family of rings with $n \in \mathbb{N} \backslash\{1\}$. Then $\overline{\mathbb{A} G}\left(\prod_{i=1}^{n} R_{i}\right)=\mathbb{A} \mathbb{G}\left(\prod_{i=1}^{n} R_{i}\right)$ if and only if R_{i} is a reduced ring for every $1 \leq i \leq n$.

Proof. It suffices to prove the case where $n=2$. Suppose that R_{1} is not a reduced ring. Then there exists $0 \neq x_{1} \in R$ such that $x_{1}^{2}=0$. We have

$$
\left(R_{1},(0)\right)\left(R_{1} x_{1}, R_{2}\right)=\left(R_{1} x_{1},(0)\right) \neq((0),(0))
$$

but

$$
\left(R_{1},(0)\right)\left(R_{1} x_{1}, R_{2}\right)^{2}=((0),(0)) .
$$

Then, $\overline{\mathbb{A} \mathbb{G}}\left(R_{1} \times R_{2}\right) \neq \mathbb{A} \mathbb{G}\left(R_{1} \times R_{2}\right)$, a contradiction. Also, we know that a direct product of reduced rings is a reduced ring. Thus, the converse follows from Corollary 2.3.

Example 2.9. Let $n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$ be the prime factorization of an integer n with $k \in \mathbb{N}$. Let $m:=\max \left\{\alpha_{i}: 1 \leq i \leq k\right\}$. Then $\overline{\mathbb{A} G}\left(\mathbb{Z}_{n}\right) \neq \mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ if and only if $k=1$ and $m \geq 4$ or $k \geq 2$ and $m \geq 2$. We can conclude $\overline{\mathbb{A} G}\left(\mathbb{Z}_{n}\right)=\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)$ if and only if $n \in\left\{p, p^{2}, p^{3}\right\}$ or $m=1$.

3. Diameter of $\overline{\mathbb{A} G}(R)$

In this section, we study the diameter of the extended annihilating-ideal graph of a ring R.

Theorem 3.1. Let R be a ring. Then $\overline{\mathbb{A} \mathbb{G}}(R)$ is connected and diam $(\overline{\mathbb{A} \mathbb{G}}(R)) \leq$ 3.

Proof. Note that $\mathbb{A} \mathbb{G}(R)$ is a subgraph of $\overline{\mathbb{A} \mathbb{G}}(R)$. Hence the result follows from [3, Theorem 2.1].

The following theorem is the first main results of this section, it shows when $\overline{\mathbb{A} G}(R)$ has a vertex adjacent to every other vertex. This is similar to [2, Theorem 2.5].

Theorem 3.2. Let I be a vertex of $\overline{\mathbb{A} G}(R)$. Then I is adjacent to every other vertex if and only if only one of the following statements hold:
(1) $R \cong K \times D$, where K is a field and D is an integral domain.
(2) $\mathbb{A}(R)^{\star}=\left\{J \in \mathbb{I}(R): \exists m \in \mathbb{N}, J^{m} \neq(0), J^{m} I^{n_{I}-1}=(0)\right\}$.
(3) $\mathbb{A}(R)^{\star}=\left\{J \in \mathbb{I}(R): \exists m \in \mathbb{N}, J^{m} \neq(0), J^{m} a=(0)\right\}$, where $0 \neq a \in I$ and $R a \subset I$.

Proof. Suppose that I is adjacent to every other vertex of $\overline{\mathbb{A} \mathbb{G}}(R)$. If I is a nilpotent ideal, then for each ideal $J \in \mathbb{A}(R)^{\star}$, there are $n, m \in \mathbb{N}$ such that $I^{n} J^{m}=(0)$ with $I^{n}, J^{m} \neq(0)$. Thus, $n<n_{I}$ and $I^{n_{I}-1} J^{m}=(0)$, i.e.,

$$
\mathbb{A}(R)^{\star}=\left\{J \in \mathbb{I}(R): \exists m \in \mathbb{N}, J^{m} \neq(0), J^{m} I^{n_{I}-1}=(0)\right\}
$$

Now, assume that $I \notin N_{\mathbb{I}}(R)$. Then $I^{2}=I$. If not, then there are $n, m \in \mathbb{N}$ such that $\left(I^{2}\right)^{n} I^{m}=I^{2 n+m}=(0)$, a contradiction. Now, let I be a minimal ideal, by Brauer's Lemma, there is an idempotent element e of R such that $R_{1}=I=R e$ and $R=R_{1} \oplus R_{2}$. Clearly, $\left(R_{1},(0)\right)$ is adjacent to other vertices of $\overline{\mathbb{A} G}(R)$. Hence, for each $0 \neq c \in R_{1},\left(R_{1} c,(0)\right)$ is an annihilating ideal of R. If $R_{1} c \neq R_{1}$, then there exists $m \in \mathbb{N}$ such that

$$
\left(R_{1},(0)\right)\left(R_{1} c,(0)\right)^{m}=((0),(0)),
$$

i.e., $R_{1} c^{m}=(0)$, a contradiction. Therefore, R_{1} is a field. We claim that R_{2} is an integral domain. Suppose that otherwise. Then there is $b \in Z\left(R_{2}\right)^{\star}$ such that $\left(R_{1}, R_{2} b\right) \in \mathbb{A}(R)^{\star}$ is not adjacent to $\left(R_{1},(0)\right)$, a contradiction. Thus, R_{2} must be an integral domain. Now, if I is not a minimal ideal, then there is $0 \neq a \in I$ such that $R a \subset I$ and it is also adjacent to every other vertex of $\mathbb{A}(R)^{\star}$. Therefore,

$$
\mathbb{A}(R)^{\star}=\left\{J \in \mathbb{I}(R): \exists m \in \mathbb{N}, J^{m} \neq(0), J^{m} a=(0)\right\}
$$

The converse is straightforward.
Corollary 3.3. Let R be a ring. If I is a nilpotent ideal and adjacent to every other vertex of $\overline{\mathbb{A} G}(R)$, then $Z(R)$ is an ideal.

Proof. According to the proven process Theorem 3.2,

$$
\mathbb{A}(R)^{\star}=\left\{J \in \mathbb{I}(R): \exists m \in \mathbb{N}, J^{m} \neq(0), J^{m} I^{n_{I}-1}=(0)\right\}
$$

Now, if $x \in Z(R)^{\star}$, then $R x \in \mathbb{A}(R)^{\star}$ and there exists $m \in \mathbb{N}$ such that $(R x)^{m} I^{n_{I}-1}=(0)$. This implies that $x \in \sqrt{A n n_{R}\left(I^{n_{I}-1}\right)}$, and so, $Z(R)=$ $\sqrt{A n n_{R}\left(I^{n_{I}-1}\right)}$ is an ideal.
Corollary 3.4. Let R be an Artinian ring and I be a nilpotent ideal which is adjacent to every other vertex of $\overline{\mathbb{A} G}(R)$. Then R is a local ring.

Proof. By assumption, R is a finite direct sum of commutative local rings. We claim that R is a local ring. Suppose that $R=R_{1} \oplus R_{2}$, where $R_{i}, i=1,2$, are local rings. Then $I=I_{1} \oplus I_{2}$ such that $I_{i}, i=1,2$, are nilpotent ideals of R_{i}. Without loss of generality, let $n_{I_{1}} \geq n_{I_{2}}$. By using part (2) of Theorem $3.2, I^{n_{I}-1}\left(R_{1},(0)\right)^{m}=\left(I_{1}^{n_{I_{1}-1}},(0)\right)$. That is a contradiction. Therefore, R is a local ring.

Theorem 3.5. Let R be a Noetherian ring. Then $\overline{\mathbb{A}}(R)$ is a complete graph if and only if either $R \cong K_{1} \oplus K_{2}$, where K_{1} and K_{2} are fields or $\mathbb{A}(R)^{\star}=N_{\mathbb{I}}(R)$ and $I^{n_{I}-1} J^{n_{J}-1}=(0)$, where $I, J \in \mathbb{A}(R)^{\star}$.

Proof. The "if" statement holds trivially. Conversely, suppose that $\overline{\mathbb{A} G}(R)$ is complete and $I \in \mathbb{A}(R)^{\star} \backslash N_{\mathbb{I}}(R)$. By proof of Theorem 3.2, $I=I^{2}$ and $R \cong K \times D$. Now, for $0 \neq x \in D,((0), R x)$ and $((0), D)$ are adjacent. Therefore, D is a field.

Theorem 3.6. Let R be a reduced ring. Then $\overline{\mathbb{A} \mathbb{G}}(R)$ is a complete graph if and only if $R \cong K_{1} \times K_{2}$, where K_{1} and K_{2} are fields.

Proof. It follows from Corollary 2.3 and [4, Theorem 2.7].
We set

$$
\begin{aligned}
\overline{\mathbb{A}}(R)^{\star} & =\left\{I^{n_{I}-1}: I \in N_{\mathbb{I}}(R)\right\} \text { and } \\
\overline{\mathbb{A}}(R)^{\star^{2}} & =\left\{I^{n_{I}-1} J^{n_{J}-1}: I, J \in N_{\mathbb{I}}(R)\right\} .
\end{aligned}
$$

Corollary 3.7. Let R be a Noetherian ring and $\overline{\mathbb{A}}(R) \neq \mathbb{A} \mathbb{G}(R)$. Then $\overline{\mathbb{A} \mathbb{G}}(R)$ is complete if and only if $\mathbb{A}(R)^{\star}=N_{\mathbb{I}}(R)$ and $\overline{\mathbb{A}}(R)^{\star^{2}}=\{(0)\}$.

Proof. Suppose that $\overline{\mathbb{A} \mathbb{G}}(R)$ is complete, by assumption and Theorem 3.5, the assertion holds. The converse is clear.

Theorem 3.8. Let R be a ring with $\mathbb{A}(R)^{\star}=N_{\mathbb{I}}(R) \neq \emptyset$. Then the following statements hold.
(1) If $\left|\mathbb{A}(R)^{\star}\right|=1$, then $\operatorname{diam}(\overline{\mathbb{A} \mathbb{G}}(R))=0$.
(2) If $\left|\mathbb{A}(R)^{\star}\right| \geq 2$, then

$$
\operatorname{diam}(\overline{\mathbb{A} \mathbb{G}}(R))= \begin{cases}2 & \overline{\mathbb{A}}(R)^{\star^{2}} \neq\{(0)\} \\ 1 & \text { otherwise }\end{cases}
$$

Proof. (1) If $\left|\mathbb{A}(R)^{\star}\right|=1$, then by [1, Theorem 3.4] either $R \cong \frac{K[x]}{\left(x^{2}\right)}$, where K is a field or $R \cong L$, where L is a coefficient ring of characteristic p^{2} and $\operatorname{diam}(\overline{\mathbb{A G}}(R))=0$.
(2) Suppose that $\overline{\mathbb{A}}(R)^{\star^{2}}=\{(0)\}$. Clearly, $\overline{\mathbb{A} \mathbb{G}}(R)$ is a complete graph, and so, $\operatorname{diam}(\overline{\mathbb{A} \mathbb{G}}(R))=1$. Now, let $\overline{\mathbb{A}}(R)^{\star^{2}} \neq\{(0)\}$. Then there are distinct vertices $I, J \in \mathbb{A}(R)^{\star}$ such that $I^{n_{I}-1} J^{n_{J}-1} \neq(0)$. If $I=I J$, then $I J^{n_{J}-1}=$ $I J^{n_{J}}=(0)$, a contradiction. Similarly, $I J \neq J$. Therefore, $I-I J-J$ is a path with length 2 between I and J in $\overline{\mathbb{A} \mathbb{G}}(R)$. Hence $\operatorname{diam}(\overline{\mathbb{A} G}(R))=2$.

The following proposition compares the diameter of the graph $\overline{\mathbb{A} \mathbb{G}}\left(\prod_{i=1}^{n} R_{i}\right)$ with the diameter of $\mathbb{A G}\left(\prod_{i=1}^{n} R_{i}\right)$.
Proposition 3.9. Let $R=\prod_{i=1}^{n} R_{i}$, where $\left(R_{i}\right)_{1 \leq i \leq n}$ is a finite family of rings with $n \in \mathbb{N} \backslash\{1\}$. If $n \geq 3$, then $\operatorname{diam}(\overline{\mathbb{A} G}(R))=\operatorname{diam}(\mathbb{A} \mathbb{G}(R))=3$. Otherwise, the following statements hold.
(1) $\mathbb{A} \mathbb{G}(R)$ is complete if and only if $R_{i}, i=1,2$, are fields.
(2) If $R_{i}, i=1,2$, are integral domains and $\left|\mathbb{I}\left(R_{1}\right)\right| \geq 3$ or $\left|\mathbb{I}\left(R_{2}\right)\right| \geq 3$, then $\overline{\mathbb{A} G}(R)=\mathbb{A} \mathbb{G}(R)$ and $\operatorname{diam}(\mathbb{A} \mathbb{G}(R))=2$. In this case $\mathbb{A} \mathbb{G}(R)$ is a complete bipartite graph.
(3) If $\mathbb{A}\left(R_{i}\right)^{\star} \backslash N_{\mathbb{I}}\left(R_{i}\right) \neq \emptyset$ for at least one of $R_{i}, i=1,2$, then

$$
\operatorname{diam}(\overline{\mathbb{A} \mathbb{G}}(R))=\operatorname{diam}(\mathbb{A} \mathbb{G}(R))=3
$$

(4) If $\mathbb{A}\left(R_{i}\right)^{\star}=N_{\mathbb{I}}\left(R_{i}\right)$ for at least one of $R_{i}, i=1,2$, then

$$
\operatorname{diam}(\mathbb{A} \mathbb{G}(R))=3 \text { and } \operatorname{diam}(\overline{\mathbb{A} G}(R))=2 .
$$

Proof. For $n \geq 3$,

$$
\left((0), R_{2}, \ldots, R_{n}\right)-\left(R_{1},(0), \ldots,(0)\right)-\left((0), \ldots,(0), R_{n}\right)-\left(R_{1}, \ldots, R_{n-1},(0)\right)
$$

is the shortest path between $\left((0), R_{2}, \ldots, R_{n}\right)$ and $\left(R_{1}, \ldots, R_{n-1},(0)\right)$. Hence,

$$
\operatorname{diam}(\overline{\mathbb{A} \mathbb{G}}(R))=\operatorname{diam}(\mathbb{A} \mathbb{G}(R))=3
$$

as required. Now, let $n=2$.
(1) Suppose that $\mathbb{A} \mathbb{G}(R)$ is complete. Since $(0,1) \in Z(R)$ and $(0,1)^{2} \neq(0,0)$, $Z(R)^{2} \neq\{0\}$. Also, we know $(0,1),(1,0) \in Z(R)$ and $(1,1) \notin Z(R)$, thus, $Z(R)$ is not an ideal and by [4, Theorem 2.7], $R \cong K_{1} \oplus K_{2}$, where K_{1} and K_{2} are fields.
(2) It is trivial.
(3) Suppose that R_{1} contains a nonnilpotent annihilating ideal I. Then there is an ideal $J \in \mathbb{I}\left(R_{1}\right)$ such that $I J=(0)$. Therefore,

$$
\left(R_{1},(0)\right)-\left((0), R_{2}\right)-(J,(0))-\left(I, R_{2}\right)
$$

is a path in both $\mathbb{A} \mathbb{G}(R)$ and $\overline{\mathbb{A} G}(R)$ and there is no vertex adjacent to both $\left(R_{1},(0)\right)$ and $\left(I, R_{2}\right)$. Hence, $\operatorname{diam}(\overline{\mathbb{A} \mathbb{G}}(R))=\operatorname{diam}(\mathbb{A} \mathbb{G}(R))=3$.
(4) Suppose that $\mathbb{A}\left(R_{1}\right)=N_{\mathbb{I}}\left(R_{1}\right)$ and R_{2} is an integral domain. For $I \in$ $\mathbb{A}\left(R_{1}\right)^{\star}$,

$$
\left(R_{1},(0)\right)-\left((0), R_{2}\right)-\left(I^{n_{I}-1},(0)\right)-\left(I, R_{2}\right)
$$

is only path between $\left(R_{1},(0)\right)$ and $\left(I, R_{2}\right)$ in $\mathbb{A} \mathbb{G}(R)$. Thus, $\operatorname{diam}(\mathbb{A} \mathbb{G}(R))=3$. Now, we set $\mathbb{A}(R)^{\star}=T_{1} \cup T_{2}$, where

$$
\begin{aligned}
& T_{1}=\left\{(I,(0)): I \in \mathbb{I}\left(R_{1}\right)^{\star}\right\} \text { and } \\
& T_{2}=\left\{(L, J): L \in \mathbb{A}\left(R_{1}\right), J \in \mathbb{I}\left(R_{2}\right)^{\star}\right\} .
\end{aligned}
$$

Obviously, the distance between two elements in $\mathbb{A}(R)^{\star}$ shows that

$$
\operatorname{diam}(\overline{\mathbb{A} \mathbb{G}}(R))=2
$$

Example 3.10. Let p and q be distinct primes. Then the following assertions hold.
(1) $\operatorname{diam}\left(\overline{\mathbb{A G}}\left(\mathbb{Z}_{n}\right)\right)=0$, if $n=p^{2}$.
(2) $\operatorname{diam}\left(\overline{\mathbb{A} \mathbb{G}}\left(\mathbb{Z}_{n}\right)\right)=1$, if $n=p^{m}, m \geq 3$. In this case $\overline{\mathbb{A} \mathbb{G}}\left(\mathbb{Z}_{n}\right)$ is a complete graph.
(3) $\operatorname{diam}\left(\overline{\mathbb{A} G}\left(\mathbb{Z}_{n}\right)\right)=2$, if $n=p^{\alpha} q^{\beta}, \alpha, \beta \in \mathbb{N}, \alpha \geq 2$ or $\beta \geq 2$. Otherwise, $\operatorname{diam}\left(\overline{\mathbb{A} \mathbb{G}}\left(\mathbb{Z}_{n}\right)\right)=\operatorname{diam}\left(\mathbb{A} \mathbb{G}\left(\mathbb{Z}_{n}\right)\right)=1$. (Graph $\overline{\mathbb{A} G}\left(\mathbb{Z}_{p^{2} q}\right)$ is a complete bipartite graph.)
(4) $\operatorname{diam}\left(\overline{\mathbb{A} G}\left(\mathbb{Z}_{n}\right)\right)=3$, if $\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$ is the prime factorization of $n, k \geq 3$.

Proof. The statements (1) and (2) are clear.
(3) By part (4) of Proposition 3.9, $\operatorname{diam}\left(\overline{\mathbb{A} \mathbb{G}}\left(\mathbb{Z}_{n}\right)\right)=2$. Now, if $\alpha=\beta=1$, then the vertex set of $\overline{\mathbb{A} G}\left(\mathbb{Z}_{p q}\right)$ is $\left\{\mathbb{Z}_{p q} p, \mathbb{Z}_{p q} q\right\}$. This implies that $\overline{\mathbb{A} \mathbb{G}}\left(\mathbb{Z}_{p q}\right)$ is a complete graph and $\operatorname{diam}\left(\overline{\mathbb{A} G}\left(\mathbb{Z}_{n}\right)\right)=1$.
(4) Follows from Proposition 3.9.

4. Cycles in $\overline{\mathbb{A} \mathbb{G}}(R)$

In this section, we study the girth of the extended of $\mathbb{A} \mathbb{G}(R)$.
Theorem 4.1. Let R be a ring. Then $\operatorname{gr}(\overline{\mathbb{A} \mathbb{G}}(R)) \in\{3,4, \infty\}$.
Proof. The assertion follows by applying [1, Theorems 3.3 and 3.4] and [4, Theorem 2.1].

Theorem 4.2. Let R be a ring. If $\overline{\mathbb{A} G}(R) \neq \mathbb{A} \mathbb{G}(R)$, then $\overline{\mathbb{A} \mathbb{G}}(R)$ contains a cycle.

Proof. Suppose that $\overline{\mathbb{A} G}(R) \neq \mathbb{A} \mathbb{G}(R)$. By Theorem 2.2, there exists $I \in N_{\mathbb{I}}(R)$ with $n_{I} \geq 3$ or $I \in \mathbb{A}(R)^{\star} \backslash N_{\mathbb{I}}(R)$ with $\operatorname{Ann}(I) \neq \operatorname{Ann}\left(I^{2}\right)$. For the first case, we have $I \neq I^{n_{I}-1}$. By using connectedness of $\overline{\mathbb{A} \mathbb{G}}(R)$, there is $J \in \mathbb{A}(R)^{\star}$ such
that $J \notin\left\{I, I^{n_{I}-1}\right\}$ and $J I^{n_{I}-1}=(0)$. Then $I-J-I^{n_{I}-1}-I$ is a cycle of length 3 in $\overline{\mathbb{A} \mathbb{G}}(R)$. For the second case, there exists $a \in Z(R)^{\star}$ such that

$$
R a \subseteq A n n_{R}\left(I^{2}\right) \text { and } R a \nsubseteq A n n_{R}(I)
$$

If $R a^{2}=(0)$, then $R a-I-I a-R a$ is a cycle of length 3. If not,

$$
I-I a-I^{2}-R a-I
$$

is a cycle of length 4 . Consequently, $\overline{\mathbb{A} \mathbb{G}}(R)$ contains a cycle.
The following corollaries are immediate results from Theorem 4.2.
Corollary 4.3. Let $\overline{\mathbb{A}}(R) \neq \mathbb{A} \mathbb{G}(R)$ and $I \in N_{\mathbb{I}}(R)$ with $n_{I} \geq 3$. Then $\operatorname{gr}(\overline{\mathbb{A} \mathbb{G}}(R))=3$.
Corollary 4.4. Let $I \in \mathbb{A}(R)^{\star} \backslash N_{\mathbb{I}}(R)$ and $J \in \mathbb{I}(R)$. If $I^{2} J=(0), I J \neq(0)$ and $J^{2}=(0)$, then $\operatorname{gr}(\overline{\mathbb{A} \mathbb{G}}(R))=3$.
Theorem 4.5. Let R be a ring and $\mathbb{A}(R)^{\star}=N_{\mathbb{I}}(R)$. Then

$$
g r(\overline{\mathbb{A} \mathbb{G}}(R))= \begin{cases}\infty & \left|\mathbb{A}(R)^{\star}\right| \leq 2 \\ 3 & \left|\mathbb{A}(R)^{\star}\right| \geq 3\end{cases}
$$

Proof. If $\left|\mathbb{A}(R)^{\star}\right|=1$, then either $R \cong \frac{K[x]}{\left(x^{2}\right)}$, where K is a field or $R \cong L$, where L is a coefficient ring of characteristic p^{2} and $\operatorname{gr}(\overline{\mathbb{A} \mathbb{G}}(R))=\infty$.

If $\left|\mathbb{A}(R)^{\star}\right|=2$, then by [4, Corollary 2.9], R is an Artinian local ring with exactly two nonzero proper ideals $Z(R)$ and $Z(R)^{2}$. Hence, $g r(\overline{\mathbb{A} \mathbb{G}}(R))=\infty$.

Now, suppose that $\left|\mathbb{A}(R)^{\star}\right|=3$. Then by [4, Corollary 2.9], R is an Artinian local ring with exactly three nonzero proper ideals $Z(R), Z(R)^{2}$ and $Z(R)^{3}$. Therefore, $\overline{\mathbb{A} \mathbb{G}}(R)$ is a complete graph and $\operatorname{gr}(\overline{\mathbb{A} \mathbb{G}}(R))=3$.

Also, if $\left|\mathbb{A}(R)^{\star}\right| \geq 4$, then we consider two cases:
Case (1): Suppose that there is $I \in \mathbb{A}(R)^{\star}$ with $n_{I} \geq 3$. Since $\overline{\mathbb{A} G}(R)$ is connected, there is at least an ideal $J \notin\left\{I, I^{2}\right\}$ such that J is adjacent to both I and I^{2} in $\overline{\mathbb{A} \mathbb{G}}(R)$.

Case (2): Suppose that for each $I \in \mathbb{A}(R)^{\star}, n_{I}=2$. Since $\overline{\mathbb{A G}}(R)$ is connected, for every three distinct vertices $I, J, K \in \mathbb{A}(R)^{\star}$, there exists a path $J-I-K$. Now, if $K \subseteq J$ or $J \subseteq K$, then $K J=(0)$. Otherwise, since $(J+K) I=(0)$ we conclude $(J+K) \in \mathbb{A}(R)^{\star}$. Thus $(J+K)^{2}=(0)$ and $J K=(0)$. In the two cases $g r(\overline{\mathbb{A} G}(R))=3$.
Theorem 4.6. Let R be a ring with $N_{\mathbb{I}}(R) \neq\{(0)\}$ and $\operatorname{gr}(\mathbb{A} \mathbb{G}(R))=4$. Then $\overline{\mathbb{A} \mathbb{G}}(R) \neq \mathbb{A} \mathbb{G}(R), \operatorname{gr}(\overline{\mathbb{A} \mathbb{G}}(R))=4$ and $\overline{\mathbb{A} \mathbb{G}}(R)$ is a complete bipartite graph.

Proof. By [1, Theorem 3.5], $R \cong R_{1} \times R_{2}$, either $R_{1} \cong \frac{K[x]}{\left(x^{2}\right)}$, where K is a field or $R_{1} \cong L$, where L is a coefficient ring of characteristic p^{2} and R_{2} is an integral domain, but it is not a field. Then $\mathbb{A}(R)^{\star}=C \cup D$, where

$$
\begin{gathered}
C=\left\{\left((x)+\left(x^{2}\right), J\right),((0), J): J \in \mathbb{I}\left(R_{2}\right)^{\star}\right\} \text { and } \\
D=\left\{\left(R_{1},(0)\right),\left((x)+\left(x^{2}\right),(0)\right)\right\} .
\end{gathered}
$$

Obviously, all elements of C are adjacent to all elements of D in $\overline{\mathbb{A} \mathbb{G}}(R)$. Therefore, $\overline{\mathbb{A} \mathbb{G}}(R)$ is a complete bipartite graph and $\operatorname{gr}(\overline{\mathbb{A} \mathbb{G}}(R))=4$. Also, $\left((x)+\left(x^{2}\right), R_{2}\right)-\left(R_{1},(0)\right)$ is an edge in $\overline{\mathbb{A G}}(R)$ whereas, $\left((x)+\left(x^{2}\right), R_{2}\right)$ and $\left(R_{1},(0)\right)$ are not adjacent in $\mathbb{A} \mathbb{G}(R)$. Thus, $\overline{\mathbb{A} G}(R) \neq \mathbb{A} \mathbb{G}(R)$.

Theorem 4.7. Let R be a ring with $N_{\mathbb{I}}(R) \neq\{(0)\}$ and $\operatorname{gr}(\mathbb{A} \mathbb{G}(R))=\infty$. Then $\operatorname{gr}(\overline{\mathbb{A} \mathbb{G}}(R)) \in\{3,4, \infty\}$.

Proof. If $\mathbb{A} \mathbb{G}(R)=\overline{\mathbb{A} \mathbb{G}}(R)$, then $g r(\overline{\mathbb{A} \mathbb{G}}(R))=\infty$. Otherwise, by Theorem 2.2, if there exists $J \in N_{\mathbb{I}}(R)$ with $n_{J} \geq 3$, then $J^{2} \neq(0)$ and $J J^{n_{J}-1}=(0)$, by proceeding the proof of $\left[1\right.$, Theorem 3.4], we have $J^{n_{J}-1}=a n n_{R}(Z(R))$. Note that $\left|\mathbb{A}(R)^{\star}\right| \geq 3$ implies that there is $K \in \mathbb{A}(R)^{\star}$ such that

$$
J-K-J^{n_{J}-1}-J
$$

is a cycle in $\overline{\mathbb{A} \mathbb{G}}(R)$. This shows that $\operatorname{gr}(\overline{\mathbb{A} \mathbb{G}}(R))=3$.
If not, there exists $J \in \mathbb{A}(R)^{\star} \backslash N_{\mathbb{I}}(R)$, with $\operatorname{Ann}(J) \neq \operatorname{Ann}\left(J^{2}\right)$. By [1, Theorem 3.4], we set $R \cong R_{1} \times R_{2}$ such that R_{1} is a field and either $R_{2} \cong \frac{K[x]}{\left(x^{2}\right)}$, K is a field or $R_{2} \cong L$, where L is a coefficient ring of characteristic p^{2} and $J=\left(R_{1},\left(x^{2}\right)+(x)\right)$. In this case $\mathbb{A} \mathbb{G}(R)=P_{4}$ and $\overline{\mathbb{A} \mathbb{G}}(R)$ with the vertex set

$$
\left\{\left(R_{1},\left(x^{2}\right)\right),\left(R_{1},\left(x^{2}\right)+(x)\right),\left((0), R_{2}\right),\left((0),\left(x^{2}\right)+(x)\right)\right\}
$$

is a complete bipartite graph. Thus, $\operatorname{gr}(\overline{\mathbb{A} \mathbb{G}}(R))=4$.
Proposition 4.8. Let $R=\prod_{i=1}^{n} R_{i}$, where $\left(R_{i}\right)_{1 \leq i \leq n}$ is a finite family of rings with $n \in \mathbb{N} \backslash\{1\}$.
(1) If $n=2$, we have the following assertions:
(a) $\operatorname{gr}(\overline{\mathbb{A G}}(R))=\operatorname{gr}(\mathbb{A} \mathbb{G}(R))=\infty$ if and only if R_{1} and R_{2} are integral domains and at least one of them is isomorphic to a field.
(b) If R_{1} and R_{2} are integral domains with $\left|\mathbb{I}\left(R_{1}\right)\right| \geq 3$ and $\left|\mathbb{I}\left(R_{2}\right)\right| \geq 3$, then $\overline{\mathbb{A} G}(R)=\mathbb{A} \mathbb{G}(R)$ and $\operatorname{gr}(\mathbb{A} \mathbb{G}(R))=4$.
(c) If R_{1} and R_{2} are not integral domains, then $\operatorname{gr}(\overline{\mathbb{A} \mathbb{G}}(R))=\operatorname{gr}(\mathbb{A} \mathbb{G}(R))$ $=3$.
(d) If R_{2} is an integral domain and $\left|\mathbb{A}\left(R_{1}\right)^{\star}\right| \geq 2$, then $\operatorname{gr}(\overline{\mathbb{A} \mathbb{G}}(R))=$ $\operatorname{gr}(\mathbb{A} \mathbb{G}(R))=3$.
(e) If R_{2} is an integral domain such that is not a field and $\left|\mathbb{A}\left(R_{1}\right)^{\star}\right|=1$, then $\operatorname{gr}(\overline{\mathbb{A} \mathbb{G}}(R))=\operatorname{gr}(\mathbb{A} \mathbb{G}(R))=4$.
(f) If R_{1} is a field and $\left|\mathbb{A}\left(R_{2}\right)^{\star}\right|=1$, then $\operatorname{gr}(\overline{\mathbb{A} \mathbb{G}}(R))=4$ and $\operatorname{gr}(\mathbb{A} \mathbb{G}(R))$ $=\infty$.
(2) If $n \geq 3$, then $\operatorname{gr}(\overline{\mathbb{A} \mathbb{G}}(R))=\operatorname{gr}(\mathbb{A} \mathbb{G}(R))=3$.

Proof. (1) If $n=2$, then the proof of parts (a) and (b) is trivial.
(c) Suppose that $\left|\mathbb{A}\left(R_{i}\right)^{\star}\right|=1$ and $I_{i} \in \mathbb{A}\left(R_{i}\right)^{\star}$. Then $I_{1}^{2}=I_{2}^{2}=(0)$ and $\left((0), I_{2}\right)-\left(I_{1},(0)\right)-\left(I_{1}, I_{2}\right)-\left((0), I_{2}\right)$ is a cycle. Now, if $\left|\mathbb{A}\left(R_{i}\right)^{\star}\right|=2$ and $I_{i}, J_{i} \in$ $\mathbb{A}\left(R_{i}\right)^{\star}$, such that $I_{i} J_{i}=(0)$. Then $\left((0), I_{2}\right)-\left(I_{1},(0)\right)-\left(J_{1}, J_{2}\right)-\left((0), I_{2}\right)$ is a cycle. Therefore, in both cases $\operatorname{gr}(\mathbb{A} \mathbb{G}(R))=3$.
(d) Let $I, J \in \mathbb{A}\left(R_{1}\right)^{\star}$ with $I J=(0)$. Then $\left((0), R_{2}\right)-(I,(0))-(J,(0))-$ $\left((0), R_{2}\right)$ is a cycle, as required.
(e) Assume that $I \in \mathbb{A}\left(R_{1}\right)^{\star}$. Then $I^{2}=(0)$ and $(I,(0))-((0), J)-$ $\left(R_{1},(0)\right)-\left((0), R_{2}\right)-(I,(0))$ is a cycle in $\mathbb{A} \mathbb{G}(R)$. Using Theorem 4.6,

$$
\operatorname{gr}(\overline{\mathbb{A} \mathbb{G}}(R))=4
$$

(f) It is explicit.
(2) The cycle $\left(R_{1},(0), \ldots,(0)\right)-\left((0), R_{2},(0), \ldots,(0)\right)-\left((0),(0), R_{3},(0), \ldots\right.$, $(0))-\left(R_{1},(0), \ldots,(0)\right)$ shows that $g r(\overline{\mathbb{A} G}(R))=\operatorname{gr}(\mathbb{A} \mathbb{G}(R))=3$.

Example 4.9. Let n have the prime decomposition $n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$. Now, if n be a non-prime natural number, then

$$
\operatorname{gr}\left(\overline{\mathbb{A} G}\left(\mathbb{Z}_{n}\right)\right)= \begin{cases}\infty & n \in\left\{p^{2}, p^{3}, p q\right\} \\ 4 & n=p^{2} q \\ 3 & \text { otherwise }\end{cases}
$$

By Proposition 4.8, we deduce that if $n \neq p^{2} q$ and $\left|\mathbb{A}\left(\mathbb{Z}_{n}\right)^{\star}\right| \geq 3$, then

$$
\operatorname{gr}\left(\overline{\mathbb{A} \mathbb{G}}\left(\mathbb{Z}_{n}\right)\right)=3
$$

and for every $n \in \mathbb{N}$ such that $\left|\mathbb{A}\left(\mathbb{Z}_{n}\right)^{\star}\right| \leq 2, g r\left(\overline{\mathbb{A} G}\left(\mathbb{Z}_{n}\right)\right)=\infty$. Also, if $n=p^{2} q$, by part (f) of Proposition $4.8, \operatorname{gr}\left(\overline{\mathbb{A} G}\left(\mathbb{Z}_{n}\right)\right)=4$.

References

[1] F. Aliniaeifard, M. Behboodi, E. Mehdi-Nezhad, and A. M. Rahimi, On the Diameter and Girth of an Annihilating-Ideal Graph, arXiv: 1411.4163v1[math. RA], 15 Nov 2014.
[2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr. 1998.7840
[3] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (2011), no. 4, 727-739. https://doi.org/10.1142/S0219498811004896
[4] , The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2011), no. 4, 741-753. https://doi.org/10.1142/S0219498811004902
[5] D. Bennis, J. Mikram, and F. Taraza, On the extended zero divisor graph of commutative rings, Turkish J. Math. 40 (2016), no. 2, 376-388. https://doi.org/10.3906/mat-150461

Mahtab Koohi Kerahroodi
Department of Mathematics
Malayer University
P.O.Box: 65719-95863

Malayer, Iran
Email address: mhbkoohi@gmail.com
Fatemeh Nabaei
Department of Mathematics
Malayer Branch
Islamic Azad University
Malayer, Iran
Email address: f_nabii@yahoo.com

[^0]: Received January 10, 2020; Revised March 17, 2020; Accepted March 24, 2020.
 2010 Mathematics Subject Classification. 05C99, 05C75, 05C25.
 Key words and phrases. Annihilating-ideal graph, extended annihilating-ideal graph, diameter, girth.

