Browse > Article
http://dx.doi.org/10.4134/JKMS.j180698

ANNIHILATING CONTENT IN POLYNOMIAL AND POWER SERIES RINGS  

Abuosba, Emad (Department of Mathematics School of Science The University of Jordan)
Ghanem, Manal (Department of Mathematics School of Science The University of Jordan)
Publication Information
Journal of the Korean Mathematical Society / v.56, no.5, 2019 , pp. 1403-1418 More about this Journal
Abstract
Let R be a commutative ring with unity. If f(x) is a zero-divisor polynomial such that $f(x)=c_f f_1(x)$ with $c_f{\in}R$ and $f_1(x)$ is not zero-divisor, then $c_f$ is called an annihilating content for f(x). In this case $Ann(f)=Ann(c_f )$. We defined EM-rings to be rings with every zero-divisor polynomial having annihilating content. We showed that the class of EM-rings includes integral domains, principal ideal rings, and PP-rings, while it is included in Armendariz rings, and rings having a.c. condition. Some properties of EM-rings are studied and the zero-divisor graphs ${\Gamma}(R)$ and ${\Gamma}(R[x])$ are related if R was an EM-ring. Some properties of annihilating contents for polynomials are extended to formal power series rings.
Keywords
polynomial ring; power series ring; annihilating content; EM-ring; generalized morphic ring; zero-divisor graph;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Endo, Note on p.p. rings, Nagoya Math. J. 17 (1960), 167-170. http://projecteuclid.org/euclid.nmj/1118800460   DOI
2 D. E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc. 27 (1971), 427-433. https://doi.org/10.2307/2036469   DOI
3 C. R. Fletcher, Unique factorization rings, Proc. Cambridge Philos. Soc. 65 (1969), 579-583.   DOI
4 A. Haouaoui and A. Benhissi, Zero-divisors and zero-divisor graphs of power series rings, Ric. Mat. 65 (2016), no. 1, 1-13. https://doi.org/10.1007/s11587-015-0235-y   DOI
5 M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110-130. https://doi.org/10.2307/1994260   DOI
6 I. Kaplansky, Commutative Rings, revised edition, The University of Chicago Press, Chicago, IL, 1974.
7 T. G. Lucas, The diameter of a zero divisor graph, J. Algebra 301 (2006), no. 1, 174-193. https://doi.org/10.1016/j.jalgebra.2006.01.019   DOI
8 N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295. https://doi.org/10.2307/2303094   DOI
9 S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra 39 (2011), no. 7, 2338-2348. https://doi.org/10.1080/00927872.2010.488675   DOI
10 V. Camillo and W. K. Nicholson, Quasi-morphic rings, J. Algebra Appl. 6 (2007), no. 5, 789-799. https://doi.org/10.1142/S0219498807002454   DOI
11 H. Zhu and N. Ding, Generalized morphic rings and their applications, Comm. Algebra 35 (2007), no. 9, 2820-2837. https://doi.org/10.1080/00927870701354017   DOI
12 D. D. Anderson and S. Chun, Irreducible elements in commutative rings with zero-divisors, Houston J. Math. 37 (2011), no. 3, 741-744.
13 E. Abu Osba and O. Alkam, When zero-divisor graphs are divisor graphs, Turkish J. Math. 41 (2017), no. 4, 797-807. https://doi.org/10.3906/mat-1601-102   DOI
14 D. D. Anderson, D. F. Anderson, and R. Markanda, The rings R(X) and RhXi, J. Algebra 95 (1985), no. 1, 96-115. https://doi.org/10.1016/0021-8693(85)90096-1   DOI
15 D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274   DOI
16 D. D. Anderson and S. Valdes-Leon, Factorization in commutative rings with zero divisors, Rocky Mountain J. Math. 26 (1996), no. 2, 439-480. https://doi.org/10.1216/rmjm/1181072068   DOI
17 D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr.1998.7840   DOI
18 M. Axtell, J. Coykendall, and J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Comm. Algebra 33 (2005), no. 6, 2043-2050. https://doi.org/10.1081/AGB-200063357   DOI
19 I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226. https://doi.org/10.1016/0021-8693(88)90202-5   DOI