• Title/Summary/Keyword: Anisotropic diffusion

Search Result 109, Processing Time 0.028 seconds

Noise removal or video sequences with ,3-D anisotropic diffusion equation (3차원 이방성확산 방정식을 이용한 동영상의 영상잡음제거)

  • Lee, Seok-Ho;Choe, Eun-Cheol;Gang, Mun-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.79-86
    • /
    • 2002
  • Nowadays there is a trend to apply the diffusion equation to image Processing. The anisotropic diffusion equation is highly favoured as a noise removal algorithm because it can remove noise while enhancing edges. However if the two dimensional anisotropic diffusion equation is applied to the noise removal of video sequences, flickering artifact due to the luminance difference between frames and ghost artifact due to the interfiltering between frames occur. In this paper the two dimensional anisotropic diffusion equation is extended to the sequence axis. The Proposed three dimensional anisotropic diffusion equation removes noise more efficiently than the two dimensional equation, and furthermore removes the flickering and ghost artifact as well.

Improvement in Image Classification by GRF-based Anisotropic Diffusion Restoration (GRF기반이방성 분산 복원에 의한 분류 결과 향상)

  • 이상훈
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.523-528
    • /
    • 2004
  • This study proposed an anisotropic diffusion restoration fer image classification. The anisotropic diffusion restoration uses a probabilistic model based on Markov random field, which represents geographical connectedness existing in many remotely sensed images, and restores them through an iterative diffusion processing. In every iteration, the bonding-strength coefficient associated with the spatial connectedness is adaptively estimated as a function of brightness gradient. This study made experiments on the satellite images remotely sensed on the Korean peninsula. The experimental results show that the proposed approach is also very effective on image classification in remote sensing.

  • PDF

Image enhancement using the local statistics

  • Ryu, Jin-Bong;Kim, Woon-Kyung
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.3-6
    • /
    • 2003
  • A nonlinear iterative filtering based on local statistics and anisotropic diffusion is introduced. Local statistics determines the diffusion coefficient at each iteration step. Anisotropic diffusion can be seen as estimates a piecewise smooth image from the noisy input image in the experimental section, our results are shown to suppress noise with preserving the edges. Therefore, it enhances the image and improves performance.

  • PDF

Noise reduction method using mean curvature diffusion (평균곡률 확산을 이용한 잡음감소 기법)

  • Ye Chul-Soo;Chung Hun-Suk;Kim Seong-Jong;Hyun Deuk-Chang
    • 한국컴퓨터산업교육학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.87-94
    • /
    • 2003
  • Anisotropic diffusion is a selective smoothing technique that promotes smoothing within a region instead of smoothing across boundaries. In anisotropic diffusion, the rate of smoothing is controlled by the local value of the diffusion coefficient chosen to be a function of the local image gradient magnitude. El-Fallah and Gary E. Ford represented the image as a surface and proved that setting the inhomogeneous diffusion coefficient equal to the inverse of the magnitude of the surface normal results in surface evolving speed that is proportional to the mean curvature of the image surface. This model has the advantage of having the mean curvature diffusion (MCD) render invariant magnitude, thereby preserving structure and locality. In this paper, the proposed MCD model efficiently reduces diffusion coefficient at the thin edges using the smoothness of the surface.

  • PDF

Nonlinear Anisotropic Diffusion Using Adaptive Weighted Median Filters (적응 가중 미디언 필터를 이용한 영상 확산 알고리즘)

  • Hwang, In-Ho;Lee, Kyung-Hoon;Kim, Woong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.542-549
    • /
    • 2007
  • Recently, many research activities in the image processing area are concentrated on developing new algorithms by finding the solution of the 'diffusion equation'. The diffusion algorithms are expected to be utilized in numerous applications including noise removal and image restoration, edge detection, segmentation, etc. In this paper, at first, it will be shown that the anisotropic diffusion algorithms have the similar structure with the adaptive FIR filters with cross-shaped 5-tap kernel, and this relatively small-sized kernel causes many iterating procedure for satisfactory filtering effects. Moreover, it will also be shown that lots of modifications which are adopted to the conventional Gaussian diffusion method in order to weaken the edge blurring nature of the linear filtering process increases another computational burden. We propose a new Median diffusion scheme by replacing the adaptive linear filters in the diffusion process with the AWM (Adaptive Weighted Median) filters. A diffusion-equation-based adaptation scheme is also proposed. With the proposed scheme, the size of the diffusion kernel can be increased, and thus diffusion speed greatly increases. Simulation results shows that the proposed Median diffusion scheme outperforms in noise removal (especially impulsive noise), and edge preservation.

An Automatic Contour Detection of 2-D Echocardiograms Using the Heat Anisotropic Diffusion Method (Heat Anisotropic Diffusion 방법을 이용한 2차원 심초음파도의 경계선 자동검출)

  • Shin, Dong-Jo;Jung, Jung-Wan;Kim, Hyouk;Kim, Dong-Youn
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.9-13
    • /
    • 1994
  • The Heat Anisotropic Diffusion Method has shown very effective for the contour detection of 2-D echocardiogram. To implement this algorithm, we have to choose the parameter C, K, and the threshold level. The choice of C and K are not very sensitive for the good edge detection of the echocardiogram, however the choice of the threshold level is very critical. Until now the threshold level is chosen by the trial and error method. In this paper, we present an automatic threshold decision method from the histogram of the gradient of boundary-like pixels.

  • PDF

ENHANCEMENT AND SMOOTHING OF HYPERSPECTAL REMOTE SENSING DATA BY ADVANCED SCALE-SPACE FILTERING

  • Konstantinos, Karantzalos;Demetre, Argialas
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.736-739
    • /
    • 2006
  • While hyperspectral data are very rich in information, their processing poses several challenges such as computational requirements, noise removal and relevant information extraction. In this paper, the application of advanced scale-space filtering to selected hyperspectral bands was investigated. In particular, a pre-processing tool, consisting of anisotropic diffusion and morphological leveling filtering, has been developed, aiming to an edge-preserving smoothing and simplification of hyperspectral data, procedures which are of fundamental importance during feature extraction and object detection. Two scale space parameters define the extent of image smoothing (anisotropic diffusion iterations) and image simplification (scale of morphological levelings). Experimental results demonstrated the effectiveness of the developed scale space filtering for the enhancement and smoothing of hyperspectral remote sensing data and their advantage against watershed over-segmentation problems and edge detection.

  • PDF

The segmentation of brain in MRI using Speckle Reducing Anisotropic Diffusion (Speckle reducing anisotropic diffusion를 이용한 MRI에서의 뇌 영상분할)

  • Yun, Hyun-Joo;Lee, Joung-Min;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.10 no.4
    • /
    • pp.1-5
    • /
    • 2004
  • 본 논문에서는 인체의 머리 부분을 촬영한 자기 공명 촬영 영상(MRI: Magnetic Resonance Imaging)에서 뇌 영역의 대뇌 피질 만을 분할하는 방법에 대해 제시하고자 한다. 뇌의 해부학적 구조를 파악할 경우에 영상 내에 함께 보여지는 두개골과 뇌척수액 등을 제외한 대뇌피질 영역을 분할하면 보다 효과적인 정보 분석 및 진단이 가능하게 된다. 본 논문에서는 3단계 알고리즘을 제시한다. 첫번째 단계에서는 Speckle reducing anisotropic diffusion (SRAD)를 이용하여 영상 내에 존재하는 잡음을 제거하기 위한 필터링이다. 두번째 단계에서는 필터링된 결과를 이용하여 추출된 임계값과 사용자의 인터렉션인 씨드 포인트를 통해 영상분할을 수행하고, 세 번째 단계에서는 후 처리를 통해 분할 결과를 보완한다. 영상분할 결과의 정확성을 측정하기 위하여 현재 병원의 의료진들이 사용하고 있는 Mayo clinic사의 Analyze를 이용하여 분할된 결과와의 오류를 측정하였다. 또한 최종 결과에 대해 ultravis를 이용한 볼륨 렌더링으로 영상분할의 최종 결과를 제시하였다.

  • PDF

Micro-crack Detection in Silicon Solar Wafer through Optimal Parameter Selection in Anisotropic Diffusion Filter (비등방 확산 필터의 최적조건 선정을 통한 태양전지 실리콘 웨이퍼의 마이크로 크랙 검출)

  • Seo, Hyoung Jun;Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.61-67
    • /
    • 2014
  • Micro-cracks in crystalline silicon wafer often result in wafer breakage in solar wafer manufacturing, and also their existence may lead to electrical failure in post fabrication inspection. Therefore, the reliable detection of micro-cracks is of importance in the photovoltaic industry. In this paper, an experimental method to select optimal parameters in anisotropic diffusion filter is proposed. It can reliably detect micro-cracks by the distinct extension of boundary as well as noise reduction in near-infrared image patterns of micro-cracks. Its performance is verified by experiments of several type cracks machined.

Effect of anisotropic diffusion coefficient on the evolution of the interface void in copper metallization for integrated circuit

  • Choy, J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.58-62
    • /
    • 2004
  • The shape evolution of the interface void of copper metallization for intergrated circuits under electromigration stress is modeled. A 2-dimensional finite-difference numerical method is employed for computing time evolution of the void shape driven by surface diffusion, and the electrostatic problem is solved by boundary element method. When the diffusion coefficient is isotropic, the numerical results agree well with the known case of wedge-shape void evolution. The numerical results for the anisotropic diffusion coefficient show that the initially circular void evolves to become a fatal slitlike shape when the electron wind force is large, while the shape becomes non-fatal and circular as the electron wind force decreases. The results indicate that the open circuit failure caused by slit-like void shape is far less probable to be observed for copper metallization under a normal electromigration stress condition.