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Abstract

A nonlinear iterative filtering based on local statistics and
anisotropic diffusion is introduced. Local statistics determines
the diffusion coefficient at each iteration step. Anisotropic
diffusion can be seen as estimates a piecewise smooth image
from the noisy input image. In the experimental section, our
results are shown to suppress noise with preserving the edges.

Therefore, it enhances the image and improves performance.

I. Introduction

Enhancing the images with preserving the edges are one of
the major issues in image processing. Partial differential
equations (PDEs) have dominated image processing research
recently. After Witkin introduced a clean formalism for the
scale-space filtering [1]. Perona-Malik introduced the elegant
formulation of anisotropic diffusion [2]. Research in the
anisotropic diffusion has been oriented toward understanding
the mathematical properties of anisotropic diffusion and related
variational formulations [3], developing related well-posed and
stable equations [4], modifying anisotropic diffusion equations
for medical applications [S]. Our method is motivated by the
great recent interest in using evolutions specified by PDE as
image processing procedures for tasks such as edge

enhancement , segmentation and detection [6}, {7].

I1. Conventional Methods

A. Anisotropic Diffusion
Diffusion methods remove noise from an image by
modifying the image via PDE. For simple example, consider

linear diffusion equation (the heat equation) given by:

3_’(3‘6_}%_’) =div(Vi(x,y,1) X

using the original image [(x,y,0)=1,(x,y) as the initial

condition, where ! specifies the image scale, and where V/
is the image gradient. Linear diffusion smoothes out noise and
edges equally. This causes difficulty in tracking features across
multiple scales. In order to keep sharp edges, while filtering
noise and small details, Perona and Malik [2] first introduced
the idea of nonlinear anisotropic diffusion by replacing the
classical isotropic diffusion equation with the PDE as follows:

Pk 1),
—ﬁ‘gty—-) = aw[g(vi]pvi] @

where ”VI” is the gradient magnitude, and g(+) is chosen

so as to suppress diffusion in the regions of high gradient and to
encourage diffusion in low gradient regions. Note that if g(s)
is equal to one, then (2) would turn into the linear diffusion

equation (1). They suggested tow “edge-stopping” functions:
-1
vi| VI
g(vi= 1.,.% and g(|VI|)=exp —"—KZH_

where K is a positive constant. Perona-Malik discretized

their anisotropic diffusion equation as follows:

A
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where [/ 1' is a discretely sampled image, S denotes the pixel

position, and ¢ denotes the iteration. The constant A is
scalar that determines the rate of diffusion, p takes one of

the four neighbors and 77, is the set of four neighbors of §.
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Perona-Malik approximated the image gradient in a particular

direction as: V]‘”, =1'-1', pen, )

P

B. Robust Anisotropic Diffusion

Black [8] showed a comparative study between Perona-
Malik anisotropic diffusion based on a combination of PDE and
estimator. In this image process, the goal is to find an image

I that satisfies the following optimization criterion:

min}" > p(l,-1,,0) ®

~el pen,
where () is a robust error norm and O is a “scale”
parameter. Equation (5) can be solved by gradient descent

using the calculus of variations as follow:

ol(x,y,ty | ., vi

where g(x)2 p/(x)/x . This demonstrates that anisotropic

diffusion is the gradient descent of an estimation problem with
a familiar robust error norm. Moreover, Black proposed to use

Tukey’s biweight error norm to define a better “edge-stopping”

function:
LA S SN
plx,0)={ 6’ o 35° <o ™
1/3 otherwise

Using Tukey’s function, the diffusion process converges
faster and yields sharper edges because of the Tukey’s biweight
function give zero weight to edges whose magnitude is above a

certain value.

C. Stabilized Inverse Diffusion Equation (SIDE)

The crucial parameter that controls the amount of blurring
in the Perona-Malik equation is K. For example, if K is
very large, then the results of Perona-Malik filtering will be
quite similar to the linear averaging. Smaller K will lead to
more edge preservation. Pollak {7] introduces a limiting case
by setting K =0, to obtain a discontinuous (s). This
resulting equation is called a stabilized inverse diffusion

equation (SIDE):

e =[;+At[y/(1,’;+,—1,’,)-11/(1,';"1,';—1)] (8)

Notice that the right-hand side .of (s) function has a

discontinuity at a point / if and only if I, =1, for some
i. Therefore, If I (8,)=1,,(t,) for some time instant f;

and some index I, then [ (f)=1,(f) forall future ¢>¢,,

i+l
that is, as soon as the values of two neighboring samples
become equal to each other, they stay equal for the remainder
of the evolution. The SIDE successively merges neighboring
pixels together, resulting in larger and larger flat regions. For a
very simple case [9], SIDE can solve the following estimation

problem:

u,=x,+w,, for n=1,---,N )

<v

Subjectto TV (x)= Z Xns1 = Xn

Above constrained estimation can be solved by evolving the

SIDE with (+)=sign(s) and with the initial signal u(0).
SIDE provides good estimates of edge locations. However,

it is not necessarily very accurate in estimating the intensity

values within each region.

111. Propesed Method

We propose a new approach directly motivated local
statistics and anisotropic diffusion. Our proposed method is
designed to eliminate the noise with preserving edges in noisy

image. Our filter produces the enhanced data according to:

LM=(-a,)l +a,,I/ (10)

where f\,’ is the mean value of the sampled image and a4, ;

is coefficient that is determined by the local statistics, and is

calculated by:

2 2
=2 pe—Te <
a,= var(l;,) var(/} ) an
1 , otherwise

The parameter & plays an important role in controlling the
performance of the filter. The larger b s, the better the
filtering effect will be, but the more it will biur sharp edges. In

the extreme cases, when b = 0, the resulting coefficient a,;
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is the same as the Lee filter coefficient, whenb =1, the filter ol
=b+ n (13)

v f -y

. . . . aq
reduces to a simple arithmetic mean filter. Fig.1 shows these "
facts conceptually. Experiments show that choosing

b€[0.2,0.3] can obtain a good result

a; ; combines a gradient magnitude operator and a Laplacian

------ operator to act like an edge detector for noisy image.

2 IV. Experimental Results

o-ﬂ
1-6 1 va(l]))
Fig.1 local coefficients: @, | To evaluate the performances, PSNR between the filtered

. , -, . output and the original image is used as a quantitative
Local variance var(/!) and local mean [ are given by: ) ) o
measurement. Consider the Lenna image shown in Fig.2(a) and

var(l:,) = (‘/I’Z\-DZ (I/’) _Tv/)l and its noisy version is shown in Fig 2(b). Also Fig.2(c)-(g) show
PR, the each fiitered results after 300 iterations.

T =%ﬁ1{ =1+ Z (I, -1)y=1I+ VZI’
i=l

P "l

The local statistics Z', var(/!) plays an essential role in

controtling the filter. At homogeneous regions(var(l_:) =~ 0':) N
then [™ =7', leading to smooth image. At edge

regions (var([_:)»g:) , then 1_\'_+l z ].", , preserving the

image edges. We can express (10) in the following form:

O - . , 1 .
IIJ - 1,, +ai.] ‘(17,1 _Il\l) = 11,] +a:,/'._-vz11,_/

n
' 1
=l:./ +m[ i+l.y (III+I/ ] )+ +al]—l (1' -1 14‘/)]
=1 +idiv(a,, VL) (12)
r |77|
. _ , o (®
a, , assigns different weights to the four directional
§ Fig.2 filtered results after 300 iterations. (a) original image (b)
differences. Using ';, | = 4 and the following equalities: noisy image (c) linear (d) PM (e) Tukey (f) SIDE (g) proposed
var(/_:)~ Z(l ST =L -
pen,
1
(, )z—(l’ ) +l IV )
7,

Vi) _2|v1’ [ +21 VI,

Finally, We can obtain the following form of @, ; :
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Fig.3 histograms on the image Fig.2. (a) original image (b)
noisy image (c) linear (d) PM (e) Tukey (f) SIDE (g) proposed

To see how much filtered output is different from the
original image, we also plot the each filtered output histograms
in Fig.3 (a)-(g). Finally, the resulting PSNR computations at the

various iteration numbers are listed:

ieration
PDE 10 20 50 100 | 200 | 300 | 500

Noisy |26.92]26.9226.92}|26.92]26

linear 124.4512294121.10119.79

PM 26.94126.97(27.05]27.1727.41 |27.63|28.05

Tukey 126.9226.92]26.92]26.9226.92]26.92(26.92

SIDE 27.77|28.56 130.36 | 30.74 } 28.72 | 27.25 | 25.44

proposed [27.02127.12127.41127.84(28.60}29.21{29.89

V. Conclusions

In this paper, we have developed a nonlinear anisotropic
diffusion technique based on local statistics for removing noise
in images. Our proposed method remains more high values
rather than other methods. This means that edges or high values
are properly reserved against blumring. ‘Tukey’s function
exhibits not much difference even after the higher iteration.
This result comes from the reason that tukey’s function gives
zero diffusion coefficients above a certain value. If we increase
scale parameter O in (7), then it will improve the PSNR.
However, it is negligible compared to others methods. SIDE
both increases the PSNR and blurs the image. We can expect
these properties from the influence function (s) and at more
iteration above 300, SIDE suffers from the serious blurring
defects. Hence, reduce the image quality. On the other hand,
our proposed method responds highly homogeneous regions by

smoothing, and shuts down its smoothing in edges regions. In

addition, the window sizes can affect filter performances.
Consequently, our proposed new method has effective
performance in reducing the noise simultaneously with good

edge preservation.
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