• Title/Summary/Keyword: Anion Exchange

Search Result 687, Processing Time 0.027 seconds

THE TRANSFER OF CHLORIDE ION ACROSS ANION EXCHANGE MEMBRANE

  • Yu, Zemu;Wang, Hanming;Wang, Erkang
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.597-601
    • /
    • 1995
  • The transfer of chloride ion across an anion exchange membrane (AEM) was investigated by cyclic voltammetry (CV) and electrochemical impedance spectra. In CV experiment, when the size of the hole in membrane was much smaller than the distance between membrane holes, the Cl anion transfer showed steady state voltammetric behavior. Each hole in membrane can be regarded as a microelectrode and the membrane was equivalent to a microelectrode array in this condition. When the hole in membrane was large or the distance between membrane holes was small, the CV curve of the Cl anion transfer across membrane showed peak shape, which attributed to linear diffusion. In ac impedance measurement, the impedance spectrum of the membrane system was composed of two semicircles at low de bias, corresponding to the bulk characteristics of the membrane and the kinetic process of ion transfer, respectively. The bulk membrane resistance increases with increasing dc bias and only one semicircle was observed at higher dc bias. The parameters related to kinetic and membrane properties were discussed.

  • PDF

Construction and Characterization of Poly (Phenylene Oxide)-Based Organic/Inorganic Composite Membranes Containing Graphene Oxide for the Development of an Anion Exchange Membrane with Extended Ion Cluster (확장된 이온 클러스터를 갖는 음이온 교환막 개발을 위한 그래핀 옥사이드를 함유한 폴리(페닐렌 옥사이드) 기반 유·무기 복합막의 제조 및 특성분석)

  • CHU, JI YOUNG;YOO, DONG JIN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.524-533
    • /
    • 2021
  • In this study, a series of anion conductive organic/inorganic composite membranes with excellent ionic conductivity and chemical stability were prepared by introducing graphene oxide (GO) inorganic nanofiller into the quaternized poly(phenylen oxide (Q-PPO) polymer matrix. The fabricated organic/inorganic composite membranes showed higher ionic conductivity than the pristine membrane. In particular, Q-PPO/GO 0.7 showed the highest ionic conductivity value of 143.2 mS/cm at 90℃, which was 1.56 times higher than the pristine membrane Q-PPO (91.5 mS/cm). In addition, the organic/inorganic composite membrane showed superior dimensional stability and alkaline stability compared to the pristine membrane, and the physicochemical stability was improved as the content of inorganic fillers increased. Therefore, we suggest that the as-prepared organic/inorganic composite membranes are very promising materials for anion exchange membrane applications with high conductivity and alkaline stability.

EVALUATION OF FERROCYANIDE ANION EXCHANGE RESINS REGARDING THE UPTAKE OF Cs+ IONS AND THEIR REGENERATION

  • Won, Hui-Jun;Moon, Jei-Kwon;Jung, Chong-Hun;Chung, Won-Yang
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.489-496
    • /
    • 2008
  • Ferrocyanide-anion exchange resin was prepared and the prepared ion exchange resins were tested on the ability to uptake $Cs^+$ ion. The prepared ion exchange resins were resin-KCoFC, resin-KNiFC, and resin-KCuFC. The three tested ion exchange resins showed ion exchange selectivity on the $Cs^+$ ion of the surrogate soil decontamination solution, and resin-KCoFC showed the best $Cs^+$ ion uptake capability among the tested ion exchange resins. The ion exchange behaviors were explained well by the modified Dubinin-Polanyi equation. A regeneration feasibility study of the spent ion exchange resins was also performed by the successive application of hydrogen peroxide and hydrazine. The desorption of the $Cs^+$ ion from the ion exchange resin satisfied the electroneutrality condition in the oxidation step; the desorption of the $Fe^{2+}$ ion in the reduction step could also be reduced by adding the $K^+$ ion.

Development of Pore-filled Ion-exchange Membranes for Efficient All Vanadium Redox Flow Batteries

  • Kang, Moon-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.4
    • /
    • pp.204-210
    • /
    • 2013
  • Thin pore-filled cation and anion-exchange membranes (PFCEM and PFAEMs, $t_m=25-30{\mu}m$) were prepared using a porous polymeric substrate for efficient all-vanadium redox flow battery (VRB). The electrochemical and charge-discharge performances of the membranes have been systematically investigated and compared with those of commercially available ion-exchange membranes. The pore-filled membranes were shown to have higher permselectivity as well as lower electrical resistances than those of the commercial membranes. In addition, the VRBs employing the pore-filled membranes exhibited the respectable charge-discharge performances, showing the energy efficiencies (EE) of 82.4% and 84.9% for the PFCEM and PFAEM, respectively (cf. EE = 87.2% for Nafion 1135). The results demonstrated that the pore-filled ion-exchange membranes could be successfully used in VRBs as an efficient separator by replacing expensive Nafion membrane.

Preparation of Anion-exchange Membrane for Selective Separation of Urea and Ion (요소(Urea) 및 이온의 선택적 분리를 위한 음이온교환막의 제조)

  • Kim, Byoung-Sik;Kim, Min;Heo, Kwang-Beom;Hong, Joo-Hee;Na, Won-Jae;Kim, Jae-Hun
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.303-309
    • /
    • 2006
  • In this study, functional anion-exchange membranes have been prepared and characterized to improve the permeation fluxes of the anion and urea for peritoneum dialysis. They were prepared by UV and radiation graft polymerization methods. The separation-membrane prepared by UV graft polymerization showed the highest grafting degree when HEMA and VBTAC were mixed by 1:2 ratio. However, the grafting degree decreased slightly at compositions above the 1:2 ratio because of the disruption of UV penetration caused by build-up of homopolymer. In the case of photo-initiator, the grafting degree increased up to 0.2 wt%, above which it decreased to a small extent. For the two membranes prepared by radiation graft polymerization, the VBTAC/HEMA membrane showed 96% grafting degree for 6 h reaction time and the GMA membrane showed over 100% grafting degree for 2 h reaction time. Anion-exchange membranes were prepared with 113% grafting degree and with DEA and TEA exchange groups. The DEA membrane showed the conversion degree of 70% in 4 h reaction time while the TEA membrane showed 30% in 2 h reaction time. The prepared anion-exchange membranes were permeable to only anions and urea, but not cations.

Synthesis and Functionalized Conditions of Quaternized Poly(vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene) Anion Exchange Membrane (질산성 질소 제거용 Quaternized Poly(vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene) 음이온교환막 제조와 관능화 조건)

  • Oh, Chang Min;Hwang, Taek Sung
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.157-164
    • /
    • 2015
  • In this study, we synthesized poly(vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene) (PVTD) copolymer and introduced functional group through quaternization reaction for removing nitrate from drinking water. Also, optimizing conditions (reaction time, reaction temperature and functionalized agents concentration) for introducing the functional group were confirmed. The basic properties such as water uptake, swelling ratio, electrical resistance, ion exchange capacity and anion permselectivity for removing nitrate from drinking water were measured. The optimal values of water uptake, electrical resistance and ion exchange capacity of synthesized anion exchange membrane were 51.2%, $5.4{\Omega}{\cdot}cm^2$, and 1.04 meq/g, respectively.

The Mixed-Bed Ion Exchange Performance and Temperature Effects at Ultra-Low Concentrations - 2.Temperature Effects - (초저이온 농도범위에서 혼합층 이온교환능과 온도의 영향 - 2. 온도의 영향 -)

  • Yoon, Tae Kyung;Noh, Byeong Il;Lee, Chang Won;Moon, Byung Hyun;Lee, Gang Choon;Jo, Myung Chan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.206-211
    • /
    • 1999
  • Mixed-bed ion exchange performance was studied experimentally with variations of cation to anion resin ratio, resin weight and temperature at ultralow sodium chloride solution concentrations of less than $1.0{\times}10^{-4}M$. Analyzing the effluent concentration histories the performance test was examined as a function of tested solution volume for a laboratory-scale continuous flow column until both the cation and anion-exchange resins were exhausted. Initial leakage was observed for both cation and anion breakthrough curves, but serious at cation breakthrough curve because of low selectivity coefficient. The slope of breakthrough curve was affected by selectivity coefficient and temperature. The slope of anion breakthrough curve was steep because of the large selectivity coefficient, and ion exchange rates increased as temperature increased. The temperature effect decreased as the total volume was increased or as the resins were exhausted.

  • PDF

A Study on the Characteristics of Anion Exchange Membrane According to Aliphatic Alkyl Chain Spacer Length Introduced into Branched Poly (Arylene Ether Sulfone) (수지상 폴리(알릴렌 이써 설폰)에 도입된 지방족 알킬사슬 연결자길이에 따른 음이온교환막의 특성 연구)

  • KIM, HYUN JIN;YOO, DONG JIN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.3
    • /
    • pp.209-218
    • /
    • 2022
  • Recently, research on the development of anion exchange membranes (AEMs) has received considerable attention from the scientific community around the world. Here, we fabricated a series of AEMs with branched structures with different alkyl spacers and conducted comparative evaluations. The introduction of these branched structures is an attempt to overcome the low ionic conductivity and stability problems that AEMs are currently facing. To this end, branched polymers with different spacer lengths were synthesized and properties of each membrane prepared according to the branched structure were compared. The chemical structure of the polymer was investigated by proton nuclear magnetic resonance, Fourier transform infrared, and gel permeation chromatography, and the thermal properties were investigated using thermogravimetric analysis. The branched anion exchange membrane with (CH2)3 and (CH2)6 spacers exhibited ionic conductivities of 8.9 mS cm-1 and 22 mS cm-1 at 90℃, respectively. This means that the length of the spacer affects the ionic conductivity. Therefore, this study showing the effect of the spacer length on the ionic conductivity of the membrane in the polymer structure constituting the ion exchange membrane is judged to be very useful for future application studies of AEM fuel cells.

Poly(vinylbenzyl chloride-glycidyl methacrylate)/Polyethylene Composite Anion Exchange Membranes for Vanadium Redox Battery Application

  • Park, Min-A;Shim, Joonmok;Park, Se-Kook;Jeon, Jae-Deok;Jin, Chang-Soo;Lee, Ki Bong;Shin, Kyoung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1651-1655
    • /
    • 2013
  • Anion exchange membranes for a vanadium redox flow battery (VRB) were prepared by pore-filling on a PE substrate with the copolymerization of vinylbenzyl chloride (VBC) and glycidyl methacrylate (GMA). The ion exchange capacity, water uptake and weight gain ratio were increased with a similar tendency up to 65% of GMA content, indicating that the monomer improved the pore-filling degree and membrane properties. The vanadium ion permeability and open-circuit voltage were also investigated. The permeability of the VG65 membrane was only $1.23{\times}10^{-7}\;cm^2\;min^{-1}$ compared to $17.9{\times}10^{-7}\;cm^2\;min^{-1}$ for Nafion 117 and $1.8{\times}10^{-7}\;cm^2\;min^{-1}$ for AMV. Consequently, a VRB single cell using the prepared membrane showed higher energy efficiency (over 80%) of up to 100 cycles compared to the commercial membranes, Nafion 117 (ca. 58%) and AMV (ca. 70%).

Comparison of Properties of Two Kinds of Anion Exchange Membranes with Different Functional Group for Alkaline Fuel Cells (알칼라인 연료전지용 다른 작용기들을 갖는 두 종류의 음이온 교환 막들의 특성 비교)

  • LEE, SEUNGYEON;YOO, DONG JIN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.5
    • /
    • pp.458-465
    • /
    • 2018
  • This study reports the fabrication of anion exchange membranes (AEMs) containing two kinds of functional groups: i) trimethylphosphite (TMP) and ii) trimethylamine (TMA). We carried out the synthesis of polymers to enhance thermal stability and ion conductivity. The alternative polymer was prepared using 2,2-bis(4-hydroxy-3-methylphenyl)propane and decafluorobiphenyl. The membrane was fabricated by solution casting method. The thermal stability of membranes was examined by TGA. The physiochemical properties of membranes were also investigated in terms of water uptake, swelling ratio, ion exchange capacity, and ion conductivity. The hydroxide ion conductivity of the membranes reached about 20.2 mS/cm for quaternary ammonium poly(arylene ether) (QA-PAE) containing TMA moiety and 5.1 mS/cm for quaternary phosphonium PAE (QP-PAE) containing TMP moiety at $90^{\circ}C$.