Browse > Article
http://dx.doi.org/10.5229/JKES.2013.16.4.204

Development of Pore-filled Ion-exchange Membranes for Efficient All Vanadium Redox Flow Batteries  

Kang, Moon-Sung (Department of Environmental Engineering, Sangmyung University)
Publication Information
Journal of the Korean Electrochemical Society / v.16, no.4, 2013 , pp. 204-210 More about this Journal
Abstract
Thin pore-filled cation and anion-exchange membranes (PFCEM and PFAEMs, $t_m=25-30{\mu}m$) were prepared using a porous polymeric substrate for efficient all-vanadium redox flow battery (VRB). The electrochemical and charge-discharge performances of the membranes have been systematically investigated and compared with those of commercially available ion-exchange membranes. The pore-filled membranes were shown to have higher permselectivity as well as lower electrical resistances than those of the commercial membranes. In addition, the VRBs employing the pore-filled membranes exhibited the respectable charge-discharge performances, showing the energy efficiencies (EE) of 82.4% and 84.9% for the PFCEM and PFAEM, respectively (cf. EE = 87.2% for Nafion 1135). The results demonstrated that the pore-filled ion-exchange membranes could be successfully used in VRBs as an efficient separator by replacing expensive Nafion membrane.
Keywords
Pore-filled; Cation and anion-exchange membranes; All-vanadium redox flow battery; Charge-discharge performances;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Skyllas-Kazacos and F. Grossmith, 'Efficient vanadium redox flow cell' J. Electrochem. Soc., 134, 2950 (1987).   DOI   ScienceOn
2 G. J. Hwang and H. Ohya, 'Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery' J. Membr. Sci., 120, 55 (1996).   DOI   ScienceOn
3 W. Wang, Q. Luo, B. Li, X. Wei, L. Li, and Z. Yang, 'Recent progress in redox flow battery research and development' Adv. Funct. Mater., 23, 970 (2013).   DOI   ScienceOn
4 G. J. Hwang and H. Ohya, 'Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery' J. Membr. Sci., 132, 55 (1997).   DOI   ScienceOn
5 Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, 'Electrochemical energy storage for green grid' Chemical reviews, 111, 3021 (2011).   DOI   ScienceOn
6 M. Vijayakumar, B. Schwenzer, S. Kim, Z. Yang, S. Thevuthasan, J. Liu, G. L. Graff, and J. Hu, 'Investigation of local environments in Nafion-$SiO_2$ composite membranes used in vanadium redox flow batteries' Solid State Nuclear Magnetic Resonance, 42, 71 (2012).   DOI   ScienceOn
7 C. Sun, J. Chen, H. Zhang, X. Han, and Q. Luo, 'Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery' J. Power Sources, 195, 890 (2010).   DOI   ScienceOn
8 Y. Lorrain, G. Pourcelly, and C. Gavach, 'Influence of cations on the proton leakage through anion-exchange membranes' J. Membr. Sci., 110, 181 (1996).   DOI   ScienceOn
9 T. Mohammadi and M. Skyllas-Kazacos, 'Use of polyelectrolyte for incorporation of ion-exchange groups in composite membranes for vanadium redox flow battery applications' J. Power Sources, 56, 91 (1995).   DOI   ScienceOn
10 T. Mohammadi, S. C. Chieng, and M. Skyllas Kazacos, 'Water transport study across commercial ion exchange membranes in the vanadium redox flow battery' J. Membr. Sci., 133, 151 (1997).   DOI   ScienceOn
11 J. Qiu, M. Li, J. Ni, M. Zhai, J. Peng, L. Xu, H. Zhou, J. Li, and G. Wei, 'Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery' J. Membr. Sci., 297, 174 (2007).   DOI   ScienceOn
12 T. Yamaguchi, S. Nakao, and S. Kimura, 'Plasma-graft filling polymerization: preparation of a new type of pervaporation membrane for organic liquid mixtures' Macromolecules, 24, 5522 (1991).   DOI
13 T. Sukkar and M. Skyllas-Kazacos, 'Modification of membranes using polyelectrolytes to improve water transfer properties in the vanadium redox battery' J. Membr. Sci., 222, 249 (2003).   DOI   ScienceOn
14 D. Xing, S. Zhang, C. Yin, B. Zhang, and X. Jian, 'Effect of amination agent on the properties of quaternized poly(phthalazinone ether sulfone) anion exchange membrane for vanadium redox flow battery application' J. Membr. Sci., 354, 68 (2010).   DOI   ScienceOn
15 M. Vijayakumar, M. S. Bhuvaneswari, P. Nachimuthu, B. Schwenzer, S. Kim, Z. Yang, J. Liu, G. L. Graff, S. Thevuthasan, and J. Hu, 'Spectroscopic investigations of the fouling process on Nafion membranes in vanadiumredox flow batteries' J. Membr. Sci., 366, 325 (2011).   DOI   ScienceOn
16 T. Yamaguchi, F. Miyata, and S. Nakao, 'Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell' J. Membr. Sci., 214, 283 (2003).   DOI   ScienceOn
17 S.-J. Seo, B.-C. Kim, K.-W. Sung, J. Shim, J.-D. Jeon, K.-H. Shin, S.-H. Shin, S.-H. Yun, J.-Y. Lee, and S.-H. Moon, 'Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications' J. Membr. Sci., 428, 17 (2013).   DOI   ScienceOn
18 W. Wei, H. Zhang, X. Li, Z. Mai, and H. Zhang, 'Poly(tetrafluoroethylene) reinforced sulfonated poly (ether ether ketone) membranes for vanadium redox flow battery application' J. Power Sources, 208, 421 (2012).   DOI   ScienceOn
19 X. Li, H. Zhang, Z. Mai, H. Zhang, and I. Vankelecom, 'Ion exchange membranes for vanadium redox flow battery (VRB) applications' Energy Environ. Sci., 4, 1147 (2011).   DOI   ScienceOn
20 T. Sukkar and M. Skyllas-Kazacos, 'Modification of membranes using polyelectrolytes to improve water transfer properties in the vanadium redox battery' J. Membr. Sci., 222, 249 (2003).   DOI   ScienceOn
21 T. Mohammadi and M. Skyllas-Kazacos, 'Modification of anion-exchange membranes for vanadium redox flow battery applications' J. Power Sources, 63, 179 (1996).   DOI   ScienceOn
22 D.-H. Kim, S.-J. Seo, M.-J. Lee, J.-S. Park, S.-H. Moon, Y. S. Kang, Y.-W. Choi, and M.-S. Kang, 'Pore-filled anion-exchange membranes for non-aqueous redox flow batteries with dual-metal-complex redox shuttles' J. Membr. Sci., in revision (2014).
23 J. Ran, L. Wu, J. R. Varcoe, A. L. Ong, and S. D. Poynton, T. Xu, 'Development of imidazolium-type alkaline anion exchange membranes for fuel cell application' J. Membr. Sci., 415-416, 242 (2012).   DOI   ScienceOn
24 M.-S. Kang, Y.-J. Choi, and S.-H. Moon, 'Water-swollen cation-exchange membranes prepared using poly(vinyl alcohol) (PVA)/poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)' J. Membr. Sci., 207, 157 (2002).   DOI   ScienceOn
25 Y. Tanaka, Ion Exchange Membranes: Fundamentals and Application, Elsevier, Amsterdam, 2007.
26 M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic, Dordrecht, 1996.
27 J. J. Krol, M. Wessling, and H. Strathmann, 'Concentration polarization with monopolar ion exchange membranes: current-voltage curves and water dissociation' J. Membr. Sci., 162, 145 (1999).   DOI   ScienceOn