Browse > Article
http://dx.doi.org/10.7316/KHNES.2018.29.5.458

Comparison of Properties of Two Kinds of Anion Exchange Membranes with Different Functional Group for Alkaline Fuel Cells  

LEE, SEUNGYEON (Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University)
YOO, DONG JIN (Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.29, no.5, 2018 , pp. 458-465 More about this Journal
Abstract
This study reports the fabrication of anion exchange membranes (AEMs) containing two kinds of functional groups: i) trimethylphosphite (TMP) and ii) trimethylamine (TMA). We carried out the synthesis of polymers to enhance thermal stability and ion conductivity. The alternative polymer was prepared using 2,2-bis(4-hydroxy-3-methylphenyl)propane and decafluorobiphenyl. The membrane was fabricated by solution casting method. The thermal stability of membranes was examined by TGA. The physiochemical properties of membranes were also investigated in terms of water uptake, swelling ratio, ion exchange capacity, and ion conductivity. The hydroxide ion conductivity of the membranes reached about 20.2 mS/cm for quaternary ammonium poly(arylene ether) (QA-PAE) containing TMA moiety and 5.1 mS/cm for quaternary phosphonium PAE (QP-PAE) containing TMP moiety at $90^{\circ}C$.
Keywords
Alkaline fuel cell; Anion exchange membrane; Quaternarization; Thermal stability; Hydroxide ion;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K. T. Lau, and J. H. Lee, "Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges", Prog. Polym. Sci., Vol. 36, 2011, pp. 813-843.   DOI
2 B. Smitha, S. Sridhar, and A. A. Khan, "Solid polymer electrolyte membranes for fuel cell applications a review", J. Membr. Sci., Vol. 259, No. 1, 2005, pp. 10-26.   DOI
3 A. R. Kim, "Synthesis and characterization of di and triblock copolymers containing a naphthalene unit for polymer electrolyte membranes", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, No. 6, 2016, pp. 660-669.   DOI
4 J. Roziere and D. J. Jones, "Non-fluorinated polymer materials for proton exchange membrane fuel cells", Annu. Rev. Mater. Res., Vol. 33, 2003, pp. 503-555.   DOI
5 A. R. Kim, "Preparation and characterization of block copolymer containing bisphenyl propane unit and nanosilica composite membrane for fuel cell electrolyte application", Trans. of the Korean Hydrogen and New Energy Society, Vol. 28, No. 2, 2017, pp. 144-149.   DOI
6 K. H. Lee, J. Y. Chu, A. R. K. S. Nahm, and D. J. Yoo, "Highly sulfonated poly(arylene biphemylsulfone ketone) block copolymers prepared via postsulfonation for proton conducting electrolyte membranes", Bull. Korean. Chem. Soc., Vol. 6, No. 34, 2013, pp. 1763-1770.
7 R. Kannan, A. R. Kim, and D. J. Yoo, "Enhanced electrooxidation of methanol, ethylene glycol, glycerol, and xylitol over a polypyrrole/manganese oxyhydroxide/palladium nanocomposite electrode", J. Appl. Electrochem., Vol. 44, No. 8, 2014, pp. 893-902.   DOI
8 R. Kannan, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synchronized synthesis of Pd@C-RGO carbocatalyst for improved anode and cathode performance for direct ethylene glycol fuel cell", Chem. Commun., Vol. 50, No. 93, pp. 14623-14626.   DOI
9 J. Liu and L. Jiang, "Electrostatic self-assembly of Pt nanoparticles on hexagonal tungsten oxide as an active CO-tolerant hydrogen oxidation electrocatalyst", Int. J. Hydrogen Energy, Vol. 43, No. 18, 2018, pp. 8944-8952.   DOI
10 R. Shimizu, J. Tsuji, N. Sato, J. Takano, S. Itami, M. Kusakabe, K. Miyatake, A. Iiyama, and M. Uchida, "Durability and degradation analysis of hydrocarbon ionomer membranes in polymer electrolyte fuel cells accelerated stress evaluation", J. Power Sources, Vol. 267, No. 1-2, 2017, pp. 243-251.
11 Y. J. Wang, J. Qiao, R. Baker, and J. Zhang, "Alkaline polymer electrolyte membranes for fuel cell application", Vol. 42, No. 13, 2013, pp. 5768-5787.   DOI
12 B. Lin, L. Qiu, J. Lu, and F. Yan, "Cross-linked alkaline ionic liquid-based polymer electrolytes for alkaline fuel cell applications", Chem. Mater., Vol. 22, No. 24, 2010, pp. 6718-6725.   DOI
13 S. Lu, J. Pan, A. Huang, L. Zhuang, and J. Lu, "Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts", Proc. Natl. Acad. Sci. U. S. A., Vol. 105, No. 52, 2008, pp. 20611-20614.   DOI
14 E. Gulzow and M. Schulze, "Long-term operation of AFC electrodes with $CO_2$ containing gases", J. Power Sources, Vol. 127, No. 1-2, 2004, pp. 243-251.   DOI
15 G. F. McLean, T. Niet, S. Prince-Richard, and N. Djilali, "An assessment of alkaline fuel cell technology", Int. J. Hydrogen Energy, Vol. 27, No. 5, 2002, pp. 507-526.   DOI
16 M. A. Hickner, H. Ghassem, Y. S. Kim, B. R. Einsla, and J. E. McGrath, "Alternative Polymer systems for Proton Exchange Membranes", Chem. Rev., Vol. 104, No. 10, 2004, pp. 4587-4612.   DOI
17 C. M. Tuan and D. Kim, "Anion-exchange membranes based on poly(arylene ether ketone) with pendant quaternary ammonium groups for alkaline fuel cell application", J. Membr. Sci., Vol. 511, 2016, pp. 143-150.   DOI
18 H. Bai and W. S. W. Ho, "New sulfonated polybenzimidazole (SPBI) copolymer-based proton-exchange membranes for fuel cells", J. Taiwan Inst. Chem. Eng., Vol. 40, 2009, pp. 260-267.   DOI
19 Z. Si, Z. Sun, F. Gu, L. Qiu, and F. Yan, "Alkaline stable imidazolium-based ionomers containing poly(arylene ether sulfone) side chains for alkaline anion exchange membranes", J. Mater. Chem. A Mater., Vol. 2, No. 12, 2014, pp. 4413-4421.   DOI
20 A. D. Mohanty, S. E. Tignor, J. A. Krause, Y. K. Choe, and C. S. Bae, "Systematic alkaline stability study of polymer backbones for anion exchange membrane applications", Macromolecules, Vol. 49, No. 9, 2016, pp. 3361-3372.   DOI
21 Y. Zhang, C. Li, Z. Yang, X. Liu, J. Dong, Y. Liu, W. Cai, and H. Cheng, "A robust pendant type crosslinked anion exchange membrane (AEM) with high hydroxide conductivity at a moderate IEC value", J. Mater, Sci., Vol. 52, No. 7, 2017, pp. 3846-3958.
22 L. Jiang, X. Lin, J. Ran, C. Li, L. Wu, and T. Xu, "Synthesis and properties of quaternary phosphonium-based anion exchange membrane for fuel cells", Chin. J. Chem., Vol. 6, No. 9, 2012, pp. 2241-2246.
23 P. Papakonstantinou and V. Deimede, "Self crosslinked quaternary phosphonium based anion exchange membranes: Assessing the influence of quaternary phosphonium groups on alkaline stability", RSC Advances, Vol. 6, No. 115, 2016, pp. 114329-114343.   DOI
24 H. R. Jang, E. S. Yoo, R. Kannan, J. S. Kim, K. Lee, and D. J. Yoo, "Facile tailor-made enhancement in proton conductivity of sulfonated poly(ether ether ketone) by graphene oxide nanosheet for polymer electrolyte membrane fuel cell applications", Colloid. Polym. Sci., Vol. 6, No. 295, 2017, pp. 1059-1069.
25 B. Kim, R. Kannan, K. S. Nahm, and D. J. Yoo, "Development and characterization of highly conducting nonfluorinated di and triblock copolymers for polymer electrlyte membranes", J. Dispers. Sci. Technol., Vol. 9, No. 295, 2016, pp. 1315-1323.
26 C. X. Lim, Y. Z. Zuo, A. N. Lai, Q. G. Zhang, A. M. Zhu, M. L. Yem, and Q. L. Liu, "Side-chain-type anion exchange membranes bearing pendent imidazolium-functionalized poly(phenylene oxide) for fuel cells", J. Membr. Sci., Vol. 513, 2016, pp. 206-216.   DOI
27 H. Liu, P. Bandyopadhyay, T. Kshetri, N. H. Kim, B. C. Ku, B. Moon, and J. H. Lee, "Layer-by-layer assembled polyelectrolyte-decorated graphene multilayer film for hydrogen gas bariier application", Composites Part B, Vol. 114, 2017, pp. 339-347.   DOI
28 C. H. Zhao, Y. Gong, Q. L. Liu, Q. G. Zhang, and A. M. Zhu, "Self-crosslinked anion exchange membranes by bromination of benzylmethyl containing poly(sulfone)s for direct methanol fuel cell", Int. J. Hydrogen Energy, Vol. 37, No. 15, 2012, pp. 11383-11393.   DOI
29 G. Shukla and V. K. Shahi, "The improved ion clustering and conductivity of a diquaternaized poly(arylene ether ketone sulfone) based alkaline fuel cell membrane", Sustainable Energy Fuels, Vol. 1, No. 4, 2017, pp. 932-940.   DOI
30 M. Vinothkannan, A. R. Kim, K. S. Nahm, and D. J. Yoo, "Ternary hybrid (SPEEK/SPVdF-HDP/GO) based membrane electrolyte for the applications of fuel cells: profile of improved mechanical strength, thermal stability and proton conductivity", RSC Advances, Vol. 6, No. 110, 2016, pp. 108851-108863.   DOI
31 J. Y. Chu, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenyl sulfone ketone) block copolymers containing 6F-BPA and perfluorobiphenylene units", Int. J. Hydrogen Energ., Vol. 38, No. 14, 2013, pp. 6268-6274.   DOI
32 A. R. Kim, C. J. Park, M. Vinothkannan, and D. J. Yoo, "Sulfonated poly ether sulfone/heteropoly acid composite membrane as electrolytes for the improved power generation of proton exchange membrane fuel cells", Composites Part B, Vol. 155, 2018, pp. 272-281.   DOI
33 S. Maurya, S. H. Shin. M. K. Kim, S. H. Yun, and S. H, Moon, "Stability of composite anion exchange membranes with various functional groups and their performance for energy conversion", J. Membr. Sci., Vol. 443, 2013, pp. 28-35.   DOI
34 J. Li, X. Yan, Y. Zhang, B. Zhao, and G. He, "Enhanced hydroxide conductivity of imidazolium functionalized polysulfone anion exchange membrane by doping imidazolium surface-functionalized nanocomposites", RSC Adv., Vol. 6, 2016, pp. 58380-58386.   DOI
35 N. H. Kim, A. K. Mishra, D. Y. Kim, and J. H. Lee, "Synthesis of sulfonated poly(ether ether ketone)/layered double hydroxide nanocomposite membranes for fuel cell applications", Chem. Eng. J., Vol. 272, 2015, pp. 119-127.   DOI
36 W. Lu, Z. Shao, G. Zhang, J. Li, Y. Zhao, and B. Yi, "Proparation of anion exchange membranes by an efficient chloromethylation method and homogeneous quaternization/crosslinking strategy", Solid State Ion., Vol. 245, 2013, pp. 8-18.