DOI QR코드

DOI QR Code

Construction and Characterization of Poly (Phenylene Oxide)-Based Organic/Inorganic Composite Membranes Containing Graphene Oxide for the Development of an Anion Exchange Membrane with Extended Ion Cluster

확장된 이온 클러스터를 갖는 음이온 교환막 개발을 위한 그래핀 옥사이드를 함유한 폴리(페닐렌 옥사이드) 기반 유·무기 복합막의 제조 및 특성분석

  • CHU, JI YOUNG (Department of Life Sciences, College of Natural Science, Jeonbuk National University) ;
  • YOO, DONG JIN (Department of Life Sciences, College of Natural Science, Jeonbuk National University)
  • 주지영 (전북대학교 자연과학대학 생명과학과) ;
  • 유동진 (전북대학교 자연과학대학 생명과학과)
  • Received : 2021.11.15
  • Accepted : 2021.12.02
  • Published : 2021.12.30

Abstract

In this study, a series of anion conductive organic/inorganic composite membranes with excellent ionic conductivity and chemical stability were prepared by introducing graphene oxide (GO) inorganic nanofiller into the quaternized poly(phenylen oxide (Q-PPO) polymer matrix. The fabricated organic/inorganic composite membranes showed higher ionic conductivity than the pristine membrane. In particular, Q-PPO/GO 0.7 showed the highest ionic conductivity value of 143.2 mS/cm at 90℃, which was 1.56 times higher than the pristine membrane Q-PPO (91.5 mS/cm). In addition, the organic/inorganic composite membrane showed superior dimensional stability and alkaline stability compared to the pristine membrane, and the physicochemical stability was improved as the content of inorganic fillers increased. Therefore, we suggest that the as-prepared organic/inorganic composite membranes are very promising materials for anion exchange membrane applications with high conductivity and alkaline stability.

Keywords

Acknowledgement

이 성과는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다.(No. 2020R1A2B5B01001458). 또한, 본 연구는 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업입니다 (NRF-2020R1A6A3A01099397).

References

  1. IEA, "The future of hydrogen", IEA, 2019. Retrieved from https://www.iea.org/reports/the-future-of-hydrogen.
  2. M. A. Abdelkareem, K. Elsaid, T. Wilberforce, M. Kamil, E. T. Sayed, and A. Olabi, "Environmental aspects of fuel cells: a review", Science of The Total Environment, Vol. 752, 2021, doi: https://doi.org/10.1016/j.scitotenv.2020.141803.
  3. Y. Yang, H. Zhang, P. Yan, and K. Jermsittiparsert, "Multiobjective optimization for efficient modeling and improvement of the high temperature PEM fuel cell based Micro-CHP system", Int. J. Hydrogen Energy, Vol. 45, No. 11, 2020, pp. 6970-6981, doi: https://doi.org/10.1016/j.ijhydene.2019.12.189.
  4. S. Y. Lee and D. J. Yoo, "Comparison of properties of two kinds of anion exchange membranes with different functional group for alkaline fuel cells", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 5, 2018, pp. 458-465, doi: https://doi.org/10.7316/KHNES.2018.29.5.458.
  5. L. Lu, G. Dai, J. Lee, and H. G. Lee, "Effect of the mixture ratio of Ni-Pt nanocatalysts on water electrolysis characteristics in AEM system", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 5, 2021, pp. 285-292, doi: https://doi.org/10.7316/KHNES.2021.32.5.285.
  6. C. Li and J. B. Baek, "The promise of hydrogen production from alkaline anion exchange membrane electrolyzers", Nano Energy, Vol. 87, 2021, doi: https://doi.org/10.1016/j.nanoen.2021.106162.
  7. N. Chen and Y. M. Lee, "Anion exchange polyelectrolytes for membranes and ionomers", Progress in Polymer Science, Vol. 113, 2020, doi: https://doi.org/10.1016/j.progpolymsci.2020.101345.
  8. S. Miao, H. Zhang, X. Li, and Y. Wu, "A morphology and property study of composite membranes based on sulfonated polyarylene ether sulfone and adequately sulfonated graphene oxide", International Journal of Hydrogen Energy, Vol. 41, No. 1, 2016, pp. 331-341, doi: https://doi.org/10.1016/j.ijhydene.2015.10.080.
  9. K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Fabrication of high-alkaline stable quaternized poly(arylene ether ketone)/graphene oxide derivative including zwitterion for alkaline fuel cells", ACS Sustainable Chem. Eng, Vol. 9, No. 26, 2021, pp. 8824-8834, doi: https://doi.org/10.1021/acssuschemeng.1c01978.
  10. S. K. Ryu, A. R. Kim, M. Vinothkannan, K. H. Lee, J. Y. Chu, and D. J. Yoo, "Enhancing physicochemical properties and single cell performance of sulfonated poly(arylene ether) (SPAE) membrane by incorporation of phosphotungstic acid and graphene oxide: a potential electrolyte for proton exchange membrane fuel cells" Polymers, Vol. 13, No. 14, 2021, pp. 2364, doi: https://doi.org/10.3390/polym13142364.
  11. S. Yoon, J. Ding, and K. Kim, "Effect of reduced graphene oxide in photoanode on photoelectrochemical performace in water splitting for hydrogen production", Trans Korean Hydrogen New Energy Soc, Vol. 27, No. 4, 2016, pp. 329-334, doi: https://doi.org/10.7316/KHNES.2016.27.4.329.
  12. S. H. Kim, K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Enhanced hydroxide conductivity and dimensional stability with blended membranes containing hyper-branched PAES/Linear PPO as anion exchange membranes", Polymers, Vol. 12, No. 12, 2020, pp. 3011, doi: https://doi.org/10.3390/polym12123011.
  13. A. K. Mohanty, Y. E. Song, B. Jung, J. R. Kim, N. Kim, and H. J. Paik, "Partially crosslinked com b-shaped PPO-based anion exchange membrane grafted with long alkyl chains: Synthesis, characterization and microbial fuel cell performance", International Journal of Hydrogen Energy, Vol. 45, No. 51, 2020, pp. 27346-27358, doi: https://doi.org/10.1016/j.ijhydene.2020.07.093.
  14. S. Sung, T. S. Mayadevi, K. Min, J. Lee, J. E. Chae, and T. H. Kim, "Crosslinked PPO-based anion exchange membranes: the effect of crystallinity versus hydrophilicity by oxygen-containing crosslinker chain length" Journal of Membrane Science, Vol. 619, 2021, doi: https://doi.org/10.1016/j.memsci.2020.118774.
  15. Y. Li, J. Sniekers, J. C. Malaquias, C. V. Goethem, K. Binnemans, J. Fransaer, and I. F. J. Vankelecom, "Crosslinked anion exchange membranes prepared from poly(phenylene oxide) (PPO) for non-aqueous redox flow batteries", Journal of Power Sources, Vol. 378, 2018, pp. 338-344, doi: https://doi.org/10.1016/j.jpowsour.2017.12.049.
  16. D. J. Yoo, S. H. Hyun, A. R. Kim, G. G. Kumar, and K. S. Nahm, "Novel sulfonated poly(arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenyl moiety: structural, thermal, electrochemical and morphological characteristics", Polymer International, Vol. 60, No. 1, 2011, pp.85-92, doi: https://doi.org/10.1002/pi.2914.
  17. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Study on the chemical stabilities of poly(arylene ether) random copolymers for alkaline fuel cells: effect of main chain structures with different monomer units", ACS Sustainable Chem. Eng, Vol. 7, No. 24. 2019, pp. 20077-20087, doi: https://doi.org/10.1021/acssuschemeng.9b05934.
  18. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Improved electrochemical performance of composite anion exchange membranes for fuel cells through cross linking of the polymer chain with functionalized graphene oxide", Journal of Membrane Science, Vol. 611, 2020, pp. 118385, doi: https://doi.org/10.1016/j.memsci.2020.118385.
  19. L. Wu, T. Xu, and W. Yang, "Fundamental studies of a new series of anion exchange membranes: Membranes prepared through chloroacetylation of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) followed by quaternary amination", Journal of Membrane Science, Vol. 286, No. 1-2, 2006, pp. 185-192, doi: https://doi.org/10.1016/j.memsci.2006.09.035.
  20. Q. Liu, Z. Wang, A. Yu, J. Li, H. Shen, H. Wang, K. Yang, and H. Zhang, "A novel anion exchange membrane based on poly (2,6-dimethyl-1,4-phenylene oxide) with excellent alkaline stability for AEMFC", Internantional Journal of Hydrogen Energy, Vol. 46, No. 47, 2021, pp. 24328-24338, doi: https://doi.org/10.1016/j.ijhydene.2021.05.004.
  21. J, Chen, M. Guan, K. Li, and S. Tang, "High-performance COF-based composite anion exchange membrane sandwiched by GO layers for alkaline H2/O2 fuel cell application", Vol. 104, 2021, doi: https://doi.org/10.1016/j.jiec.2021.08.016.
  22. M. M. Alam, M. Hossain, Y. Mei, C. Jiang, Y. Wang, C. Y. Tang, and T. Xu, "An alkaline stable anion exchange membrane for electro-desalination", Desalination, Vol. 497, 2021, doi: https://doi.org/10.1016/j.desal.2020.114779.
  23. Z. Li, R. Yu, C. Liu, J. Zheng, J. Guo, T. A. Sherazi, S. Li, and S. Zhang, "Preparation and characterization of side-chain poly(aryl ether ketone) anion exchange membranes by superacid-catalyzed reaction", Polymer, Vol. 222, 2021, doi: https://doi.org/10.1016/j.polymer.2021.123639.
  24. B. Lee, A. Kodir, H. Lee, D. Shin, and B. Bae, "Preparation and charaterization of the polymeric antioxidant for improving the chemical durability of polymer electrolyte membranes", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 5, 2021, pp. 308-314, doi: https://doi.org/10.7316/KHNES.2021.32.5.308.
  25. H. Li, J. Dong, X. Cao, X. Ren, Z. Hao, and J. Yang, "Diamine crossklinked anion exchange membranes based on poly(vinyl benzyl methylpyrrolidinium)", Polymer, Vol. 212, 2021, doi: https://doi.org/10.1016/j.polymer.2020.123156.
  26. Z. Liu, L. Bai, S. Miao, C. Li, J. Pan, Y. Jin, D. Chu, X. Chu, and L. Liu, "Structure-property relationship of poly (2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes with pendant sterically crowded quaternary ammoniums", Journal of Membrane Science, Vol. 638, 2021, doi: https://doi.org/10.1016/j.memsci.2021.119693.
  27. M. Manohar, A. K. Das, and V. K. Shahi, "Alternative preparative route for efficient and stable anion-exchange membrane for water desalination by electrodialysis", Desalination, Vol. 413, 2017, pp. 101-108, doi: https://doi.org/10.1016/j.desal.2017.03.015.
  28. I. Muhammad, U. A. Noor, Y. Wang, and T. Xu, "Investigation of key process parameters in acid recovery for diffusion dialysis using novel (MDMH-QPPO) anion exchange membranes", Journal of the Taiwan Insititue of Chemical Engineers, Vol. 93, 2018, pp. 405-413, doi: https://doi.org/10.1016/j.jtice.2018.08.009.
  29. J. Pan, B. Wei, H. Xie, J. Feng, S. Liao, X. Li, and Y. Yu, "Hexyl-modified series-connected bipyridine and DABCO di-cations functionalized anion exchange membranes for electrodialysis desalination", Separation and Purification Technology, Vol. 265, 2021, doi: https://doi.org/10.1016/j.seppur.2021.118526.
  30. K. H. Lee, J. Y. Chu, A. R. Kim, K. S. Nahm, C. J. Kim, and D. J. Yoo, "Densely sulfonated block copolymer composite membranes containing phosphotungstic acid for fuel cell membranes", Journal of Membrane Science, Vol. 434, 2013, pp. 35-43, doi: https://doi.org/10.1016/j.memsci.2013.01.037.
  31. B. Zhang, M. Zhao, Q. Liu, X. Zhang, Y. Fu, E. Zhang, G. Wang, Z. Zhang, and S. Zhang, "Advanced anion exchange membranes with selective swelling-induced ion transport channels for vanadium flow battery application", Journal of Membrane Science, Vol. 642, 2022, doi: https://doi.org/10.1016/j.memsci.2021.119985.
  32. J. Thomas, B. Francis, S. Thomas, A. Schehter, and F. Grynszpan, "Dependable polysulfone based anion exchange membranes incorporating triazatriangulenium cations", Solid State Ionics, Vol. 370, 2021, doi: https://doi.org/10.1016/j.ssi.2021.115731.
  33. J. Chen, P. Li, N. Zhang, and S. Tang, "Highly hydroxide-conducting hybrid anion exchange membrane with functional COF-enhanced ion nanochannels", Electrochimica Acta, Vol. 391, 2021, doi: https://doi.org/10.1016/j.electacta.2021.138962.
  34. N. Chen, Y. Liu, C. Long, R. Li, F. Wang, and H. Zhu, "Enhanced performance of ionic-liquid-coated silica/quaternized poly(2,6-dimethyl-1,4-phenylene oxide) composite membrane for anion exchange membrane fuel cells", Electrochimica Acta, Vol. 258, 2017, pp. 124-133, doi: https://doi.org/10.1016/j.electacta.2017.10.043.
  35. J. Y. Chu, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6F-BPA and perfluorobiphenylene units", International Journal of Hydrogen Energy, Vol. 38, No. 14, 2013, pp. 6268-6274, doi: https://doi.org/10.1016/j.ijhydene.2012.11.144.
  36. S. C. Jang, W. C. Tsen, F. S. Chuang, and C. Gong, "Simultaneously enhanced hydroxide conductivity and mechanical properties of quaternized chitosan/functionalized carbon nanotubes composite anion exchange membranes", International Journal of Hydrogen Energy, Vol. 44, No. 33, 2019, pp. 18134-18144, doi: https://doi.org/10.1016/j.ijhydene.2019.05.102.
  37. C. Wang, J. Liao, J. Li, Q. Chen, H. Ruan, and J. Shen, "Alkaline enrichment via electrodialysis with alkaline stable side-chain-type polysulfone-based anion exchange membranes", Separation of Purification Technology, Vol. 275, 2021, doi: https://doi.org/10.1016/j.seppur.2021.119075.
  38. Y. Jiang, J. Liao, S. Yang, J. Li, Y. Xu, H. Ruan, A. Scotto, B. V. D. Bruggen, and J. Shen, "Stable cycloaliphatic quaternary ammonium-tethered anion exchange membranes for electrodialysis", Reactive and Functional Polymers, Vol. 130, 2018, pp. 61-69, doi: https://doi.org/10.1016/j.reactfunctpolym.2018.05.014.
  39. F. H. Liu, C. X. Lin, E. N. Hu, Q. Yang, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Anion exchange membranes with well-developed conductivity channels: effect of the functional groups", Journal of Membrane Science, Vol. 564, 2018, pp. 298-307, doi: https://doi.org/10.1016/j.memsci.2018.07.038.
  40. H. Choi, C. Rhyu, S. Lee, C. Byun, and G. Hwang, "Study on anion exchange membrane for the alkaline electrolysis", Trans Korean Hydrogen New Energy Soc, Vol. 22, No. 2, 2011, pp. 184-190, doi: https://dx.doi.org/10.7316/khnes.2011.22.2.184.